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3&; . communicating computer systems, a parameterized protocol
{} convertor permits the use of communication equipment
i{g supporting variations of the same communication protocol or
ékf completely different framing technlique protocols. The
Lf' analysis of the conversion process includes the engineering
. trade-offs between speed of conversion and flexibllity, and
bﬁg the use of an alternative flow architecture. Flexibility
?} is enhanced through user selection of input and output
ﬁtfi protocol types, and the designation of functional

? specifics, such as code type, header length, and error

i detection methods, with variable parameters. The speed of
1ﬁ: conversion Is increased through the parallel processing of
g the framing, transparency, and error control sub-functions
_~' and the use of a single byte storage technique. The single
?;; byte storage technique imposes some limitations in the use
:iﬁ of transparent data.
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' I. INTRODUCTION
‘I‘t %
v
} \ Currently there is a proliferation of computers needing
%@o to exchange information which are hampered by incompatible
DA X
V) comnunication protocols. These incompatibilities are
IR
J.» manifest in different word lengths, different operating

speeds, various error detection schemes and assorted other
capabilities. Any one of these incompatibilities between
two systems effectively renders communication between them

.,
s B
W _# .

lfgg impossible.

;33 Capability, not communications compatibility is usually
jﬁi the driving factor in system procurement decisions, and the
'6 subsequent communications incompatibility brings on

xgl inefficiency. Untlil communication parameters can be

;3% standardized nationally, and then internationally, the need
R exists for an intermedliate solution: a parameterized

protocol converter.
This thesis describes an analysis and exploratory

X § design of a parameterized protocol convertor; a protocol
g‘; convertor with its functional specifics designated with

f)' variable parameters. Designed to circumvent the

,ﬁ} incompatibilities between communicating computer systems,

. ﬁ the parameterized protocol convertor permits the use of

:33 communication equipment supporting varilations of the same
9 communication protocol or completely different framing

:%ﬁ technique protocols. The parameterized protocol convertor
:%% is adaptable to any combination of input and output

E b protocols of the three major framing techniques. The three

major framing techniques are character oriented protocols,
byte count protocols, and bit oriented protocols.

A
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»

There are two initlal design requirements to be met

P
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with a parameterized protocol convertor:
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yﬁ‘ - Sufficient flexiblility to absorb variations between

%%. implementations of similar protocols.

I - The fastest performance possible.

ﬁﬁ? Flexibility is required for several reasons. Various
?(; systen manufacturers have interpreted the protocol

fkk: standards differently. 1In their designs of communication
ZW. equipment, the system manufacturers have included small but
 §: significant variations between the protocol their equipment
'i; supports and the protocol other manufacturer’s equipment
fﬁ; supports. These differences between ‘standard’ protocols

h makes communication between systems from different

:?f manufacturers difficult.
;igj If the design is to remain viable for any length of
Q&I time, it nust be flexible in its implementation. Changes
‘0 , in the protocols supported and the addition of new

513 protocols are anticipated by parameterizing aspects of the
ii; protocols likely to be altered.

{?' Although there are several protocol convertors already
! available, all suffer from limitations as to their speed of
3&% operation or the extent of their flexibility. To increase
ﬁﬁ the speed of conversion, there are several aspects of

%Eﬁ current protocol convertors which need to be modified. One
D of these is the storage of data as it is converted.

;;ﬁ Current protocol convertors must store a large portion of a
,%Bk frame of information to convert the information content
?ﬁf: between two different protocols. If the data stream can be
(f manipulated without storing the entire frame in the

‘?Ei protocol convertor memory, the speed of conversion can be
S increased.

FE; Another property of current protocol convertors in need
LI of modiflcation is the use of sequential, microprocessor
.‘}‘ controlled logic to implement the conversion process. Many
p\ﬁ facets of protocol conversion can be executed
’%? simultaneously with parallel processing. There are

e alternative architectures more adapted to parallel
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processing than the traditional control flow architecture

employed in current protocol convertors.

Sequential, microprocessor controlled logic usually
requires software control of its operation. Software
control is desirable for flexibility and ease of alteration
of the sequence of operation. But software control also
decreases the conversion speed, in that instructions must
be fetched and interpreted. The requirement to fetch and
interpret instructions can be removed by implementing the
protocol conversion algorithms in hardware instead of
software.

A synopsis of each chapter follows.

Chapter Two provides some basic definitions of
protocols, their sub-functions and protocol convertors.

The definitions are followed by a discussion of some of the
requirements for protocol conversion. One reason
emphasized Is a lack of clearly delineated standards in the
digital communication field. Another reason is the
extensive interoperability requirements of computer
communications in both the military and the civilian
business world.

Chapter Three is an analysis of the two major
conflicting requirements of a protocol convertor; speed and
flexibility. A substantial speed of operation is desired
to keep the protocol convertor from becoming the bottleneck
in the communication system. At the same time, sufficient
flexibility is required to absorb variations in the
different implementations of similar protocols.

Chapter Four is a description of the parameterized
protocol convertor architecture. Starting with an example
of how the parameterized protocol convertor would operate,
the chapter includes descriptions of the system block
diagram, the separate protocol conversion units and several
customized circuits. The implementation of the conversion

process in hardware using an internal virtual protocol is
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; g described, along with a detajiled description of the three
:aﬁ sub-functions required for protocol conversion; framing,
X transparency and error control.

S Chapter Five is a description of the implementation of
RN the architecture described in Chapter Four. The

:E: implementation description encompasses both the chip design
V) for the parameterized protocol convertor and a systenm

Jj design for the entire communications link including the
1? protocol convertor. Several alternatives for the systenm
. L

R design are presented, covering various levels of traffic

intensity on the communications channel.

‘ggl Chapter Six is a summary of the presentation and sonme
ﬁﬁ conclusions drawn from the analysis and exploratory

S design.

[Aa

° This thesls presents some possibilities for improving
f:i the current state of protocol conversion. Several

f:; innovative approaches to the conversion problem are

:ta explored and several new techniques developed. The concept

of parallel sub-function processing and the concept of the

e protocol convertor as a fllter with minimal storage is
Eﬁj supported throughout, even though this leads to some

?ff unresolved problenms.
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: II. THE NEED FOR PROTOCOL CONVERTORS
ZQ#
':§ A. DEFINITION OF A PROTOCOL
ﬁ:{ For two systems to communicate successfully, they nmust
1:3 ‘tspeak the same language;’ that is they must both
ﬁi understand what is being passed between them as to content,
o form and timing. The information passed between the two
??: systems must comply with some mutual set of rules and
, conventions, called a protocol [(Ref. 1l:p. 11.
j%: The analysis of complex communication protocols and
.;E systems can be simplified through the use of partitioning.
n;. One set of partitions in communication network theory is
‘o\ the International Standards Organization (ISO) Reference
:§§ Model of Open Systems Interconnection (0SI), commonly
i:ﬁ referred to as the seven layer model.
:}ﬁ As its common name implies, the ISO 0OSI model consists
' of seven layers:
‘2: ) 1. The application layer.
;} 2. The presentation layer.
,;- 3. The session layer.
D 4. The transport layer.
%ﬂ 5. The network layer.
if 6. The data link layer.
jf 7. The physical layer.
‘;A The bottom two layers, the physical layer and the data
i: link layer are usually implemented in hardware and are the
ﬁ; two layers of primary interest in this study of the
ﬁi protocol conversion process.
if The physical layer is involved in transmitting raw bits
'35 over a communication channel. Here the major
N considerations are mechanical, electrical, and procedural
%Q interfacing to the subnet. The data link layer is involved
!ii in segmenting the input data into frames. The data link
-
’ 9
.
)
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layer creates and recognizes frame bcundaries by attaching

special bit patterns to the beginning and ending of a
frame. ([Ref. 2:p. 171}

The top five layers are typically implemented in .
software and perform various tasks such as:

Controlling the operation of the subnet.

Determining the route for the frame to follow.

Providing an interface for the user into the network.

Executing library functions.
Each communication system in the ISO OSI model consists
of an identical set of seven layers. The use of the model
leads to analyzing seven different protocols between the
seven layers of the model. Within each communication
system, messages to be transmitted are passed down through
the top layers of the model to the bottom layers of the
model through interfaces. These interfaces provide a
conduit for data between the layers of the model and serve
to insulate the different layers from changes in adjacent
layers.

Only the bottom layer of the model, the physical layer,
uses a physical protocol. The physical layer is the only
layer that actually passes tangible data bits between the
twu communication systems. The other six layers
comnunicate through implicit protocols. There is no
physical link between peer layers of the two communication
systems in the top six layers. The passage of data from an
upper layer to the bottom layer of one system, across the
physical link and back up to the equivalent layer of the
other system provides a virtual communication link between
the two peer layers.

In addition to the IS0 OSI partitioning of the entire
communication system, the concept of a protocol can be
divided into seven specific sub-functions. According to
McNamara (Ref. 3], protocols solve operating problems in
the following areas:

10
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- Framing.

= Error control.

- Sequence control.
- Transparency.

- Line control.

- Time-out control.
- Initialization.

The concept of framing or segmenting can be viewed on
two separate, yet Iinterconnected levels. Framing can be
considered the determination of which groups of bits make
up characters, or whlich groups of characters constitute
frames. The current popular protocols are divided into
three categories according to their message framing and
segmenting technigues. Character oriented protocols use
special characters to indicate the beginning and ending of
a frame. Byte count protocols send a tally of how many of
the characters or bytes following the frame header
constitute the information filed of the frame. Bit
oriented protocols, like character oriented protocols, use
a special flag character or bit sequence to delineate
frames.

Byte count protocols are sensitive to undetected errors
in the tally field of the frame, and restrict the data
format to a specific character size. Character oriented
protocols hamper the evolution of the protocol by building
in a specific character code. The most popular modern
framing technique is the one used in bit oriented
protocols. Bit oriented protocols prevent user data from
interfering with framing, but do not restrict the data to
one particular character size. [Ref. 4:p. 10]

Error control encompasses the entire area of error
detection and correction. Various forms of redundancy
checks are used to determine If a frame was received
without errors. These include, but are not limited to:
Cyclic Redundancy Checks (CRC), Longitudinal Redundancy

11




Checks (LRC) and Vertical Redundancy Checks (VRC). Popular
protocols request the re-transmission of error corrupted
frames instead of the time consuming process of error
correction.

Sequence control is concerned with the numbering of
frames to avoid duplication and loss of frames. The
re-transmission of error corrupted frames requires sequence
control to reduce the possibility of interpreting
re~transmitted frames as originals.

Transparency involves transmitting data that could be
interpreted as special control characters. Some frames may
contain data that appear to the receiving station to be one
of the special control characters (for character oriented
protocols) or special bit sequences (for bit oriented
protocols) used in framing. Bit stuffing and character
stuffing are used to alter the data as it leaves the
transmaitting station and prevent any misinterpretation by
the receiving station.

Line or flow control can be viewed as traffic control on
the transmission medium. This protocol sub~function
determines which station will transmit and which station
will receive. The station receiving the frame must reply
to the station sending the frame with acknowledgments and
possible requests for the re-transmission of error
corrupted frames.

Time-out control is that part of a protocol that handles
the case of what to do If the message traffic suddenly
ceases. It also collaborates with sequence control in
keeping track of lost frames by signaling the lack of an
expected response after an allotted time period.

Start-up or initialization control handles the case of
instigating the flow of data in on idle communication
channel. It encompasses the determination of how to inform
the receiving station that a frame is on its way before the
actual arrival of the frame. This allows the receiving

12
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station to prepare itself to receive the frame.

These are just a sampling of the duties of a protocol.
There are other problems that must be solved as well, such
as decliding what a transmitter should send when it has no
data to send, and how to recover from an abnormal
condition. The various protocols solve these problems with
a multitude of different methods. Before any effective
transfer of information between two different protocols can
take place, the different protocol solutions to each of
these listed problems must be correlated. This is the
challenging job of the protocol convertor.

B. DEFINITION OF A PROTOCOL CONVERTOR

When two communication systems do not use the same
protocol, a special type of flilter or buffer is needed to
support communications between them. The filter accepts
data in one protocol and plies It as necessary to transform
it into another protocol for output. This data
manipulation effectively establishes a data path between
the two systems. The established data path permits
comnunication between the two systems despite differences
in speed and message formats. The filter operation is
called protocol conversion, and consequently the filter has
been dubbed a protocol convertor.

The analysis of the protocol conversion process entails
many of the functions performed by the protocols
themselves. But a distinction must be drawn between the
protocol conversion process and the operation of a
protocol. Any communication system needing the services of
a protocol convertor already has the mechanisms and
circuits in place to accomplish the tasks delineated by the
sub-functions. These mechanlisms and circuits are specific
to one particular protocol, but they presumably function
properly within the specifications of that particular
protocol. The job of the protocol convertor is not that of

13
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a half or full-duplex serial receiver or transmitter, but
simply a filter to assist in the transfer of data between
two system using different protocols.

Protocol conversion can be accomplished with many
different technologies and techniques. Karten
(Ref. 5:p. 7] lists several different options for
connecting incompatible equipment; each with its own set of
advantages and disadvantages.
A ‘black box’ hardware approach.

A software progran.

Network-based protocol conversion services.

Varied combinations of hardware and software.

The oldest, most established method of protocol
conversion is the ‘black box’ approach; a hardware device
connecting two communicating stations. Each station sends
its signals to the other station through the *black box’.
Within the box, the received signals are converted into a
protocol understood by the recelving stations and then
transmitted. This technique is relatively straight
forward, but the requirement for one box per set of
stations makes the ‘black box’ approach expensive.

Another method of implementing a protocol convertor is a
software program which accomplishes the same effect as the
‘black box.’ The signals from the stations are passed
through a processor running a protocol conversion progranm.
The program manipulates the signals into protocols
understood by the receiving station. This technigue is
somewhat more flexible than the ‘black box,’ because of the
accessibility of the conversion program stored in
software. But software programs also require extensive
memory and tend to slow down the conversion process.
Depending on the source of the software, the cost is
comparable to the ’black box’ method.

A third option for implementing a protocol convertor is
the use of network-based protocol conversion services, such

14




,iﬁ& as GTE’s Telenet and McDonnel-Douglas’s Tymnet. These

ﬁ?ﬁ services receive signals from various stations, and convert
o them to a network standard protocol. The signals are then
Eéﬁ . routed to the network processor nearest the receiving

:i}g station. At the nearest network processor, the signals are
:?ﬁ converted from the network standard protocol into a

i:)‘ protocol understood by the receiving station and

3€if transmitted. Network-based services are only appropriate
3:;: for systems using many widely dispersed facilities which
‘;Eﬁ have access to phone lines.

These are just a few examples of the different

w{§ technologies and techniques available to accomplish

&3& protocol conversion. There are a multitude of combinations
;Q&; of these methods which are also used, such as the

O ‘ combination of software and hardware techniques into a

*firmware’ approach.

e
-t C. LACK OF STANDARDS

There are as many different standards for protocols as
there are methods to implement them. Fortunately, most of

{: these standards are similar in format, timing and methods
f}? of conveying information. These similarities are due in
C) part to the basic structure required of a digital
:?if communication protocol and in some cases, one common source
;i?; for many different standards. Despite minor differences,
‘ﬁé most modern protocols are designed around basically the
:P. same frame format. The variations between similar

N protocols have originated where protocol specifications

%% have been interpreted differently.

}:': Many of the popular protocols are adaptations by the
A standardization organizations of the same basic protocol.
'ﬁ:i . For example, SDLC (Synchronous Data Link Control) which was

S
:%23 first developed by IBM (International Business Machines)
‘jgi was modified by the American National Standards Institute
[ (ANSI) to ADCCP (Advanced Data Communication Control
2
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%&‘ Procedure). The International Standards Organization (I1S0)

%{f also modified SDLC to become HDLC (High-level Data Link

B Control). The Comité Consultatif Internationale de

gi ‘ Télégraphique et Téléphonique (CCITT) then modified HDLC to -
:“- become its LAP (Link Access Procedure). Subsequently, the

gk. CCITT modified LAP to become LAPB, and integrated it into .
}D' the X.25 network interface standard. [Ref. 2:p. 168]

Nl Tanenbaum sums up the state of standardization within

i?* the digital communication community in his text on computer

%;h networks:

"The nice thing about standards is that you have so many
to choose from: furthermore, if you do not like any of
then, ;ou can iust wait for next year’s model.”

[Ref. 2:p. 168

With this multitude of different standards and
consequently different protocols, the best immediate

-

A o

@ Kzt il

solution is a parameterized protocol convertor. A

%
R

parameterized protocol convertor is flexible enough to make

LR P R
SRR

allowances for the small but significant differences

&l
Py

AR

between the popular protocols, yet fast enough to avoid
becoming a bottleneck in the system. Until protocol

1S

E§;§ standardization is established nationally and then A
;:,ﬁ internationally, the need for a fast, flexible protocol

(-

LK convertor will exist.

@)

D. INTEROPERABILITY

A

Variations in protocols and other incompatibilities

#J\‘c"

':?h between communication systems are commonly referred to as

IS interoperability problems. The effects of these

‘Sﬁf interoperability problems can be observed in three separate

?2%; areas:

;;@ - The military services.

o » - The home computer market.

B, 4
sﬁ?; - The business world.
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Interoperablility is defined in military terms as:

“The ability of systems, units, or forces to provide
services to and accept services from other systems, units
or forces and to use the services so exchanged to enable
them to operate effectively together.“(Ref. 6]

This ‘ability to provide and accept services’ is
tantamount to compatibility. In effect it means
configuring and equipping ferces in such a way that they
are able to share resources. These resources range from
tangible goods such as ammunition, spare parts and POL
(Petroleum, Oil and Lubricant) products to less substantial
items such as intelligence information, messages and fire
support coordination measures. With the introduction of
digital communication systems and the extensive use of
computers to handle information in the military services,
the challenge of interoperability has spread to the
computer communication field.

Protocol incompatibility is a major source of probleams
between the military services, With the number of
technologically advanced communication systems being
developed and acquired by the different services, the
maintenance of a standard communication protocol between
them is nearly impossible. Some systems have been deemed
adequate for missions they were not originally designed
for. The subsequent revelation of incompatibilities with
other systems involved with the same nmission is usually too
late for engineering developaent changes.

Most of the interoperability problems caused by the use
of various protocols can be solved by the implementation of
a paranmeterized protocol convertor. Systems that were not
designed to share information could still communicate
despite the use of different protocols. Weapon systems
capability would not have to be sacrificed for
compatibility with other systems or other Services.

Another source of interoperability problems within the

military services is the Department of Defense systenms
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acquisition policy. The military services are directed by

Congress to purchase their systems from the civilian

industrial base; in direct contrast to the government owned

arsenals of previous years. The various contractors and .
subcontractors employed to build these systems are at

different levels of technological maturity, and

consequently design systems using different communication

,protocols.

The need for a flexible protocol convertor is more wide
spread than just the military environment. As the honme
computer market has expanded, the number of uses of home
computers is growing also. Home computer owners can now
communicate with banks for their account status, access
data bases for information on a multitude of subjects, and
use other “"on-line® services, such as electronic mail. No
one standard protocol has been established for the honme
computer communication market. There are several that
enjoy varied levels of popularity, such as XHODEHI,
KERHITZ, and HNP3 but they are not compatible with each
other (Ref. 71.

It is too late to set a single communication pratocol
standard through out the home computer market. A
significantly large number of home computers and HODEHS4
have already been purchased supporting various
communication protocols; consolidating them would be
impossible. The next best solutlion is a protocol convertor
that would make the individual choice of communication
protocol insignificant.

----IA widely used error-checking protocol for
microcomputers which has been placed in the public domain.

ZA protocol developed by Columbia University f.r
communications among mlcrocomuputer, minicomputers and
@alnfranes.

Microcon Networkin? Protocol, a file transfer
protocol developed by Microcom Inc.

uHODulator-DEHodulator: a device which modulates and
demodulates digital signals onto and off of phone lines.

18
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Another demand for a flexible protocol convertor is in
the business communication network arena. Some
corporations are finding it more economical to purchase
network system components from different manufacturers
rather than tie themselves to one product line, or one
vendor for their computing needs. The main reasons for
using products from multiple suppliers are reduced cost,
flexible hardware and software upgrades, and access to
advanced technology [Ref. 8:p. 148]. Other corporations i{n
a hasty effort to obtain computing capablility, have amassed
a varied assortment of computers all supporting different
communication capabilities and protocols. Whatever their
source, these system differences come to bare when an
attempt is made to tiz the various systems into one
network. The lack of a common protocol among the numerous
system manufacturers is a major obstacle to be overcome in
the networking arena.

E. SUMMARY

The mutual set of rules and conventions which
communication systems share in order to ‘speak the same
language’ is called a protocol. These protocols solve
operating problems in the areas of: framing, error
control, sequence control, transparency, line control,
time-out control, and start-up control. There is a
multitude of different protocols, each with slight, but
significant varlations. When two systems do not share the
same protocol, a special filter called a protocol convertor
Is required to enable them to communicate. The protocol
convertor establishes a data path between communication
systems despite differences in speed and message formats,
and errors introduced by the communication medium. There
are numerous techniques and technologies for implementing
protocol convertors, each with its own advantages and
disadvantages.

..........
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f:f A parameterized protocol convertor is flexible enough to
::ﬁ mnake allowances for the small but significant differences

between the popular protocols, yet fast enough to avolid

]&h beconing a bottleneck in the system. There are extensive
ﬂﬂ uses for a parameterized protocol convertor. Computer
Tﬁ communications users from all walks of life would benefit
fj from the removal of the restrictions imposed by

j;; incompatible protocols. The military would see an end to
;ﬁﬁ many of its interoperability problems. The home computer
‘;* user could access an sizable number of different on-line
L))

services. The business computer user would be freed from

.i? the limited selection of a single equipment supplier.

< Until protocol standardization is established nationally
tf and then internationally, the need for a fast, flexible
'® protocol convertor will exist.
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_ ITI. CONFLICTING REQUIREMENTS OF SPEED AND FLEXIBILITY
853
}g:. Protocol conversion for modern communication systeams
; ﬂ generally necessitates a compromise of speed and
fﬁ flexibility requirements. While protocol conversion must
%x& be accomplished at sufficient speeds to avoid becoming a
iﬁﬁ bottleneck In the system, the conversion process must also
;Sé be flexible enough to accommodate variations between

_ implementations of similar protocols. Unfortunately, the
;lﬁ concurrent implementation of these two conflicting
f%ﬁ performance specifications is not directly obvious. The
jsz englineering trade-offs between speed and flexibility call
o for a careful analysis of the desired speed capabilities
:Eﬁ and the required flexibility specifications.
‘:L Use of the tradlitional control flow architecture can
‘:E' . prove to be a detriment to the effective implementation of
) a fast but flexible protocol convertor. Mlcroprocessor
lii . controlled logic and the incurred dynamic flexibility
{k& reduce the speed of the conversion process. Alternate
&;f methods, similar in a limited sense to a data flow
:) architecture, offer promising possibilities of an increased
ﬁﬁ? speed of operation while maintaining an adeguate degree of
, flexibility.
2
® A. ENGINEERING TRADE-OFFS BETWEEN SPEED AND FLEXIBILITY
:,é One of the most interesting aspects of the engineering
:igf analysis of a problem is the comparative weighting of
;EE different features or capabilities. Various applications
| require an emphasis on different attributes of a design,
;SE many of which are in contention with each other. In a
;?; protocol convertor, the major conflicting attributes are a
?@- high speed of operation and an extensive degree of
éﬁ: flexibility. A high speed of operation can be defined as
N
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:';i
E,@ sufficient speed to avoid becoming a bottleneck in the
ﬁﬁ% system. Flexibility can be defined as adaptability to
) changes or variations in the protocols. It can be divided
;ES into two broad categories, dynamic flexibility and static
o flexibility.
siq For the purposes of this paper, dynamic flexibility is
i)p defined as the capablility of a device to alter the variable
Pii parameters of its function, while the operation is in
f}&} progress. This extensive flexibility is inherently
§3ﬁ dependent on a control flow architecture, and the
implementation of algorithms in software vice hardware. A
T control flow architecture supports the comparison
decisions, branching and jumping capablilities of the
.S{ controlling instructions or program. These capabilities
m: permit a device to control its own instruction sequence and
‘ﬁfﬂ to alter the flow of an operation already in progress, to a
i;j limited degree.
;;fj In contrast, static flexibility is more limited and is
defined as the capability of a device to alter the variable
?}; parameters of its function, but not while the operation is
~ﬁ¥ in progress. Static flexibility does not require the
ff: generality of a control flow architecture, and an
d architecture more compatible with the specific requirements
Fki of the application can be exploited. A device designed
fﬁ; with static flexibility implements its algorithms in
‘ig hardware vice software, and is flexible only in that
.;' parameters of the operation can be set before use. If
‘5§5 changes are necessary, the process must be halted, the
?ﬁﬁ changes made, and the process restarted.
;?é The implementation of a device with dynamic flexibility
e sacrifices some of the otherwise possible speed
;ﬁﬁ capabilities of the device. The use of software to
123 implement algorithms reduces the overall speed of operation
kgﬁ of the device, because of the requirements to interpret the
iﬁ instructions stored in software and fetch the operands.
N 22
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Implementation of the same device with the more limited

static flexibility will typlcally indicate a marked
increase in speed of operation. To use static flexibility,
the algorithms of the application must be somewhat limited
in scope and implemented entirely in hardware. Which
degree of flexibility and corresponding speed of operations
is used is dependent on the requirements of the application
of the device. For example, protocol conversion requires
only limited flexibility, but it does require sufficient
speed to avoid being the bottleneck in the communication
link.

The implementation of the most time consuming aspects
of a process in hardware is termed functional
specialization. While functional specialization may
provide an increase in speed of operation, It also requires
a trade-off in the form of a restricted application of the
system. A system implemented with functional
specialization is limited in its flexibility of application
to one specific area of operations [Ref. 9:p. 201]. The
concept of a parameterized protocol convertor is that of a
dedicated machine in that It is designed to perfornm
protocol conversion only. Sufficient flexibility for
general application is forfeited for an increased speed of
operation.

Bracker [(Ref. 101, in his article on the current
protocol vendor offerings, lists forty-three different
devices which convert from protocol A to protocol B.
Twenty-five of these devices are hardware and or software
systemns designed to convert between two specific
protocols. They do not provide for any combinations of
protocols other than those specified by the manufacturer,
and only limited variations of the two protocols supported.

The next major group of protocol convertors listed are
front-end processors; devices which are sold as protocols
convertors but also have some user programmable

capability.
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Even with the flexibility provided by their programming
capability, they are still listed as only being able to
convert between two different protocols. The programming
capability of these devices does permit changes in the
system to account for variations of the two protocols
supported. The rest of the protocol convertors listed
provide specific services such as conversion from full to
half-duplex and emulation of specific data terminals. Of
the forty-three listed as capable of converting protocol A
to protocol B, only three are strictly hardware systems.
The currently available protocol convertors offer
dynamic flexibility only. They use a software
implementation of the conversion algorithms to achieve the
desired levels of flexibility with a consequential
reduction in the speed of conversion. Protocol conversion
is one process where static flexibility should be
sufficient. The parameters of a protocol are not changed
while the convertor is in operation, only when the systenm
protocol is altered in some way. Limiting the
implementation of a protocol convertor to the static
flexibilitv of hardware implemented algorithms should
increasing the speed of the conversion operation.

B. REQUIREMENTS FOR SPEED

The requirement for fast protocol conversion is driven
by the desire for the conversion process to be invisible to
the user. Communicating with a separate system using
another protocol and a protocol convertor should not appear
any different to a user than communicating with a separate
system using the same protocol. A hardware implementation
of the protocol convertor is usually required to maintain a
sufficient speed of conversion.

An acceptable speed of conversion is tied to many
communication link hardware specifications. These
specifications include the communication capabilities of

24




.E;E the system with other systems and the communication channel
;i: bandwidth limitations. In order for the protocol convertor
{ not to be the bottleneck in the communication system it

:;j must operate at least as fast as the slowest plece of

?&j hardware involved with the communication link. This

g;j minimum requirement is just that, a minimum requirement and
4()‘ should not be taken as a design goal. Both the

;Eﬁ communication capabilities of modern systems and the

bandwidth of communication channel technologies are being
improved at a steady rate.

' Siewiorek et al. [Ref. 11] uses Kiviat graphs to
summarize the major performance parameters of several
popular systems. One dimension of the Kiviat graphs is

ﬁ; dedicated to the systems communication capabilities with
31 other computers. The source of the system communication
f}f speed limitations are typically due to limited system bus

capabilities or slow CPU clock speeds relative to
communication speeds. Table 3.1 lists several systems and
i their capabilities for communication with other systenms.

NS

%ﬁ; TABLE 3.1 COMPARATIVE SYSTEMS COMMUNICATION
CAPABILITIES

o SYSTEM BLTS/SECOND

VAX 11/780 512 x 103

- IBM 370 Model 155 784 x 103

e, BSP (Front End B7800) 12 x 10°

i CYPER 170 16 x 108

o8 CYPER 205 50 x 10°

e CRAY 1 50 x 10°

®

:{3 Another aspect of the communication link hardware

2{; specifications which effects the desired speed of protocol
;} conversion is the communication channel bandwidth

?ﬁ limitations. Figure 3.1 and 3.2 illustrate the data rate

25
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Figure 3.1 Optical Fiber Bandwidth

O1

KM JONVLSIa

ot

10000000 100000000

1000000
BAUD (BITS/SEC)

10000




0000001

(Has/s.Ligl) anvd
0000017

00001

i ﬁ| _
- | T ZEvsu dOVAUALINT AIONVIVE
ANIDA']
— — -— ‘g '.t»‘ —_ ——
HLLATMANVYU HAIM
. _ KPS \. AP S b AR I LI ) t.-- e

OT

W) JONVISIA

Pt

0

o1

Figure 3.2 Wire Bandwidth

27




N N T T W T T T T T O TrTw M |

:\_~ hl

~j versus distance relationships for several variations of two

?ﬁi of the common digital communication channel technologies;

) fiber optics and copper wire.

ﬁfl The latest technological breakthrough in communication

qfﬁ channel technology is the use of fiber optics. Fiber

'ﬁh optics offer a far greater potential transamission bandwidth .

‘j than metallic cable systems or radio systems. A coaxial

f‘. cable system is limited to approximately 500 megahertz of

g%§ transmission bandwidth, and a rillimeter wave wideband

&.é radio system to approximately 700 megahertz. Currently the
bandwidth available to fiber optic systems is the range of

‘js several gigahertz over a few kilometers and hundreds of

Séi megahertz over tens of kilometers without intervening

b repeaters. In the near future the usable fiber optics

A. system bandwidth will be extended further towards the

S& optical carrier frequency (lO13 Hz - 1016 Hz) to

oS provide an information carrying capacity far in excess of

i:é that obtained using copper cables or a wideband radio

i system. [Ref. 12:p. 7]

&f} One significant limitation to the available

‘ﬁﬂ communication bandwidth of a fiber optics system is the

'¥§ electronics which are required to support communications

D using the channel. Although the fiber optic channel itself

'ﬁg can handle transmissions of several hundred megahertz, the

;ﬁ@ circuitry used to modulate the signals onto the channel is

;ﬁi limited to the speed of the current circuit technologies.

- The common, commercially available TTLI circuitry is

i;; lin;ted to the area of 20 megahertz and the more expensive

‘:57 ECL* operates typically in the area of 70 megahertz.

‘i%l Until circuit design technologies can achieve the sanme

o bandwidth as fiber optic systems, the sizeable bandwidth

Mo available can be utilized only with multiplexing systenms,

]%g which combine many different signals onto one channel.

‘33 """ "Irransistor-Transistor Logic

lgi 2Enitter-Coupled Logic |
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,glj The speed considerations for protocol conversion in this
):& case are for one single data stream, without multiplexing.
}"4 Current communication channel bandwidth limitations are
,1$ . no reason to reduce efforts to provide the fastest protocol
2§§ conversion services possible. As technologies mature,
W faster communication channels will be developed, until the
ﬁi protocol convertor will eventually become the bottleneck in
ﬁgl the communication link.

-&g If sufficient communication channel bandwidth and

‘gﬁ processor communication capabilities are available,

processing of the protocol becomes the major detriment to

:{f} fast protocol conversion. A protocol convertor that can
-
‘nn not keep pace with the data being input into it requires

some form of data storage. If the size of the storage

o i ?

o buffer is not sufficient to absorb the difference between
,@:Z data reception speed and data conversion speed, buffer

;;f overflows occur and increase the processing delay even

;fg more. Any buffer overflow requires the re-tranmission of
-, the data, again slowing the system’s effective throughput.
ji} To overcome these obstacles, efforts are made to streamline
S

the data manipulation by simplifying the conversion process

-.~.,
Wd
x
"'

and using the parallel constructs of a data flow

architecture. [Ref. 13:p. 2]

5= O
2y e}

pr?¢5%-

L.

Another aspect of the required speed capabilities is
the conversion between the serial data used for
communication between systems and the parallel data used

internal to the system. Since most digital communication

E;?ﬁ traffic traveling any major distance is passed over a

‘E%; single channel per transmitter medium, the data must be

;:E: transmitted serially. This is in contrast to the short

LI distance communication between a system and its peripherals
ﬁt% usually accomplished on parallel lines. The serial

R‘& transmission of data requires very high bit rates to keep

o

up with the fast parallel movement of data within modern

"r’ systems, and to maintain a reasonable throughput.
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i
‘%2 Joshi and Iyer (Ref. 13] use the illustration of a
*E% funnel as a tool to help describe the conversion between
'( parallel and serial data and the resulting increase in
ﬂ{ﬁ speed of the data. As the data is received from a systenm -
ﬁ%ﬁ in parallel form into the wide mouth of the funnel, it is
:?{g converted into serial form and passed to the transmitting ]
}W’ medium at the constricted funnel end. An analogy is made
:;;3 between the data and a fluid in the funnel, where the data
fp@ moves much more rapidly at the constricted end of the
;éﬁ funnel than at the wide mouth of the funnel.
' Any processing performed on a data stream can be viewed
'gé; as a perturbation which causes turbulence in the funnel,
;{Qf because it slows down the movement of data. Where in the
‘ﬁf funnel the data is processed determines the extent of the
|; effect of the turbulence. If the processing occurs in the
O wide (parallel) section of the funnel, the effect of the
i;f turbulence is minimal. This is in contrast to processing
“ in the narrow (serial) section where any degradation in j
| speed is of major concern. Processing iIn the high speed
Qij narrow section of the funnel requires high speed and J
:Eﬁg consequently expensive hardware. In order for less
;% expensive techniques to be used effectively, the
‘ configuration of the processing and the conversion
i_q architecture must be carefully defined.
L
o C. REQUIREMENTS FOR FLEXIBILITY
® The reguirement for a flexible protocol convertor is
i '{ driven by several factors related to current protocols and
W $E their standardization. These include:
: ' - The many variations of currently popular protocols.
“‘ = Inevitable changes in current protocols.
:xjy - The development of new protocols as the standards are .
'igi approved.
’%QT - A significant reduction in hardware redesign
¢ requirenments.
b
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{*(E The desired degree of flexibllity in a parameterized

‘VE protocol convertor requires the use of a changeable

"( parameter store, such as software or firmware. This is in

ES% . contrast to a protocol convertor implemented totally in

:ﬁa hardware which can not be readily adjusted to any

?ES . alterations in the conversion process.

.;)' A limited degree of flexibllity is required to account

S\X for the subtle differences in various implementations of

5$§ the currently popular protocols. These differences are the

.%ii result of varied interpretations of the protocol standards

and the implementation of these differences by various

_in system manufacturers. An example is the development of LAP

L&ig from SDLC described previously.3

‘Aj As communication techniques and technologies advance,

\OLT there will be inevitable changes in the protocols currently

5;;: installed on major communication systems. These changes

)Q:: will require a modification of the parameters of a protocol

“ﬁﬁ i convertor. If the changes are anticipated, and sufficient
{ flexibility built in, the protocol convertor will not

Ei&; become obsolete any faster than the technology of the

b system it supports.

ﬁRﬁ Once the adaptability of the current protocols has been

:) T exhausted, new ones will have to be developed. These new

?33 protocols will include the latest state-of-the-art

!}gs techniques of communication protocol technologies. The

i;& chances of anticipating sufficient flexibility requirements

to absorb the changes in this situvation is doubtful, but
nevertheless a worthy goal.
As new protocols are accepted as standards, a flexible

parameterized protocol convertor will be adaptable to the

o changes without major hardware reconfigurations, or

253 modifications. Under the concept of static flexibility,

~ T

f%{ the parameters most likely to be altered or adapted in a

‘%&ﬂ new protocol are maintained in a changeable control store.
A Y

e |

: f 3See p.15 - protocol standards.
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. Only the apparently consistent operation algorithms are
implemented in hardware. Unless the development of a new
protocol significantly alters the basic operation of

4‘j protocol conversion, the only changes should be in the

" ¥ easily accessible parameters.

2

?ﬂ D. WHY NOT CONTROL FLOW ARCHITECTURE

;y A major consideration in the design of a system is the
4? relation between the algorithms to be implemented and the
e,

architecture to be used. When there is a correlation
between the algorithm and the architecture, a synergistic
effect can be expected. Both the algorithm and the
architecture seem to perform better by their relationship

(S
Lo s 5
A T4,

bl

with the other. The algorithas involved in protocol
conversion are not suited to the control flow architecture
they are currently implemented with.

e
TR SV A

The traditional control flow architecture or Von

e N @R

Neumann architecture is know for its generality and
flexibility in that it supports a large variety of

Ay A A
SO
B e

programming languages and styles with reasonable
effectiveness. Its flexibility stems from the control flow
structure which allows the programmer, the compiler, and or
the interpreter direct control over the low level machine

»

e
L
e Tl Bty

(@
=7

\\ﬁ operations when necessary (Ref. 14:p. 5941].
153 Control flow architectures are also know for their

{j implicit sequential nature. There is a single thread of
i{. control passed from instruction to instruction, resulting
:¥; in explicit transfers of control from one instruction to
&; the next. The instructions have limited control over their
,}? own sequence of execution. [Ref. 15:p. 7341}
'.3 Hwang and Briggs (Ref. 15) list several identifying
iﬁ} characteristics of a control flow architecture:

if} - Data is passed between instructions via references to
108 shared memory cells.

an - The flow of control is implicitly sequential.

W
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% - Program counters are used to sequence the execution of

W instructions in a centralized control environment.

. These characteristics provide a high degree of

S flexibility, but not without some significant trade-offs.

': There is a substantial cost in speed of operations in order

" to allow an almost universal applicability of the

i architecture.

& The majority of the available protocol convertors use

g both hardware and software in a microprocessor controlled

5 logic system. These logic systems resemble the traditional

. control flow architecture with the program or instruction

{: sequence stored in software. The conversion speed of these

(? units is directly related to the controlling microprocessor

Eﬁ speed. Both the system clock frequency and the rate at

® which the microprocessor can sequence through its

f} instruction cycle limit the speed at which conversion can

i; be realized. Although fast enough for most applications,

i . the sequential nature of their operation, the long
instruction execution times, and the centralized program

% control result in a system which is too slow to meet the

}% critical time constraints of protocol conversion

2 (Ref. 16:p. 131,

T A study of comparative architectures would indicate

t; that the more aspects of a system are implemented in

\3 hardware, the faster the speed of the system. This

:¥ increase in speed is offset by a corresponding reduction in

. flexibility. One example is the Intel 8087 Numeric Data

‘g Processor (NDP) used in conjunction with the Intel 8086 or

‘j 8088 microprocessor. The 8087 NDP performs only one basic

;¥ type of function; arithmetic and transcendental operations

'! on integers and real numbers. There are only fourty-eight

a instructions available in the 8087 instruction set, and

”i they are all oriented towards numeric operations. The 8087

.2 NDP performs these arithmetic and transcendental operations

.

\‘?
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at a five to ten fold speed increase over the more flexible
processors it supports [Ref. 17:p. 40].

Flexibility realized from the storage of instructions
in software is one example of dynamic flexibility. The
instruction flow of a system under software control can be
altered as the system is operating. For example, most
languages implemented on control flow architecture machines
support the use of comparison decisions, and subsequent
branching. These branches effectively change the flow of
instructions dependent on either the results of internal
calculations or external inputs. This dynamic flexibility,
afforded by the storage of instructions in software, is a
desirable asset in many situations requiring varied
applications of the same design.

Although desirable in some situations, a fixation with
flexibility can prove fatal to speed capabilities. 1In
general terms, the more flexible a system, the slower the
system is in operation. The possibility of several
applications is typically gained at the expense of the
speed of operation of the variations.

E. DATA FLOW ARCHITECTURE

A more promising approach to implementing a fast yet
flexible protocol convertor is the use of limited aspects
of a data flow or data driven architecture Where a control
flow architecture is oriented towards the sequential
interpretation and execution of instructions, a data flow
architecture exploits parallelism by executing instructions
as the required operands for the instruction become
available, regardless of the order of the instructions.
The number of different operations being concurrently
executed in a data flow architecture is limited only by the
hardware resource availability [Ref., 15:p. 291,

According to Gajski et al., (Ref. 18], a data flow
model of computation is based on two principles:
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- Asynchrony - operations are executed when and only
when the required operands are available,.

- Functionality - all operations are functions without
side effects, that is, any two operations can be
executed in either order or concurrently.

In a data flow architecture, many instructions can be
executed simultaneously and asynchonously. The scheduling
and synchronization of concurrent activities are built in
at the hardware level, enabling each instruction to be
treated as an Iindependent concurrent action
[Ref. 14:p. 4871.

Generally, to increase the speed of operation of a
control flow architecture system, there must be an increase
in the speed of the individual components of the system.
Just adding more components is usually of limited value.
In contrast, a data flow architecture system benefits fronm
an increase in the number of processors, up to a limit
where the communication delay between the processors is
greater than the processing time of a single processor. In
a parameterized protocol convertor, increasing the number
of processors correlates to increasing the number of
simultaneous operations performed.

The parameterized protocol convertor is not a true
implementation of the data flow architecture. The data
flow architecture is usually implemented as a general
purpose, programmable system. The parameterized protocol
convertor is a dedicated machine, designed for one
application only. Both the parameterized protocol
convertor and a data flow architecture:

- Exploit parallelism.

- Instructions (or operations) are executed when the
operands become available.

- Instructions (or operations) are not ordered.

The parameterized protocol convertor uses operations

stored in hardware instead of the instructions of a true

35
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E;E data flow architecture. These operations are essentially
i . algorithms implemented directly with programmable logic
i arrays (PLA) and random loglc.

;; The data path implementation of a protocol convertor is
ﬁ&: a ‘dedicated machine,’ in that it only performs the

:zg function of protocol conversion. The ‘general purpose

D) machine’ flexibility of the control flow architecture has
QE; been abandoned for the sake of increased speed of

:51 operations. Not all flexibility has been sacrificed for
\?* this increase in speed, only the dynamic flexibility

afforded by the branching abilities of a control flow
architecture.

Partitioning a process and devoting a separate
processor to each part of the overall process is called

"NI-;}'U‘O )

° functional decomposition. Though not as effective as

{E? functional specialization, functional decomposition also

fﬂ produces an increase in the speed of operations. For

42%5 example, the use of parallel data flow within the protocol
’ convertor assists in obtaining the desired high speed of

Vﬁj conversion.

&; The concept of functional decomposition is applied to
ﬁ; the data stream to be processed. As the data stream is

s

O

received it is copied into parallel shift registers The
data is then manipulated concurrently from each shift

;EQ register. In particular, the determination of transparent
%?3 data, the error control process, and the determination of
e the frame limits all take place at the same time.

ri{ The determination of how to break the incoming data
‘%% stream into sections has a major impact of the overall

speed of the conversion process. Any increase in speed of
operation from an implementation of functional
decomposition is dependent on the even distribution of work
between the operations, to prevent one of them from
becoming a bottleneck in the systenm.
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F. SUMMARY

To be effective, a parameterized protocol convertor
necessitates a balance between conflicting speed and
flexibility requirements. Adequate flexibility must be
provided to account for variations in the protocols
supported, and sufficient speed of operations is required
to avoid becoming a bottleneck in the system. The
currently available protocol convertors offer a limited
degree of flexibility, but their implementation with
software systems and control flow architectures reduce the
possible speed of conversion.

The requirement for fast protocol conversion is in
comparison to the communication capabilities of the
system. Systems are typically limited by restricted bus
capabilities, CPU clock speeds and communication channel
bandwidth limitations. The protocol conversion process
should not be a bottleneck in the system architecture.

The requirement for a flexible protocol convertor is
driven by the lack of standardization of protocols. There
are many variations of the popular protocols, and even
these change periodically. Some flexibility must be
allowed if the protocol convertor is to remain unaffected
by the changes in the protocols supported.

The extensive flexibility of control flow architectures
can be a detriment to a specific application with major
speed requirements and limited flexibility requirements.
Alternative architecture concepts, such as the data flow
architecture can be employed in a protocol convertor to
assist in the achievement of sufficient speeds of

operation.
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IV. PROPQSED ARCHITECTURE FOR PROTOCOL CONVERSION
2 A. AN EXAMPLE

;;i A typical example of protocol conversion will help
i:i illustrate the basic concepts of the parameterized protocol
ij convertor. Two stations of a communication system are

tﬁ required to exchange data at a high rate on a half-duplex
é& communication channel in a serial synchronous mode.

i+ Station A uses DDCMP (Digital Data Communications Message
. Protocol), a typical byte count protocol, and Station B
%% uses SDLC (Synchronous Data Link Control), a typical bit
:ﬁ; oriented protocol. Neither station has an internal

(ﬁy protocol conversion capability; both of them must rely on
‘é_ external convertors to exchange information with stations
&5 supporting other protocols.

E The data to be exchanged between Station A and Station
Ti- B consists of relatively short frames on the average of

] forty to fifty bytes each. The Station A DDCMP frame

’f;i format is illustrated in Figure 4.1.
__ SYNISYMICLS|CNT | FLG|RSP|SEJ|ADD|CRCL | INFO|CRC2

a | 14 28| 2|2l 16 16
7 |
,;E Figure 4.1 DDCMP Frame Format

fﬁ Where SYN is the synchronization character, CLS is the
EE: class of the frame, CNT is the byte count, FLG is a quick
:::: synchronization or select flag, RSP is the response to the
gf last frame, SEQ is the sequence number of this frame, ADD
;;i: is the address, CRC! is the header block check characters,
3{?: INFO is the information field and CRC2 is the information
:;ft field block check characters (Ref. 3:p. 158]. The numbers
7
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under the acronyms are the length of the fields in bits.

The information field can be up to 16,363 bytes in length.
The first nine filelds of the frame contain information

relative to the system protocol. Only the information
field contains the data required by the user at Station B.
Figure 4.2 illustrates the SDLC frame format.

FLG{ADD|CTL | INFO|CRC|FLG
g8 |1 81| 8 16| 8

Figure 4.2 SDLC Frame Format

Where FLG is the synchronization flag, ADD is the frame
address, CTL is a control byte, INFO is the information
field, CRC is the frame block check characters and FLG is
the synchronization flag again [Ref. 3:p. 164]. The
numbers under the acronyms are the length of the fields in
bits. The information field can be any number of bits.
The first three fields of the frame contain information
relative to the system protocol. Similar to the DDCMP
frame format, only the information field contains the data
required by the user at Station A.

Two parameterized protocol convertors are required to
support communication between Station A and Station B. The
parameterized protocol convertor installed with Station A
is set for a byte count input protocol and a bit oriented
output protocol. The parameterized protocol convertor
installed with Station B is set for a bit oriented input
protocol and a byte count output protocol.

To aid the protocol convertor in determination of the
frame boundaries, detection of any transparent data, and in
error control, several aspects of the two protocols must be

specified. These include, the code type used, the bit

sequence used as a synchronization character, the length of
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the header and which CRC generator is used. The parameter
inputs for both convertors are set as indicated in

Table 4.1 for the byte count protocol parameters and

Table 4.2 for the bit oriented protocol parameters.

TABLE 4.1 BYTE COUNT PROTOCOL PARAMETER SETTINGS

Code Type - ASCII
Synchronization Character - 00010110
Header Length (after synchronization) - 8 bytes
Byte Count Length - 14 bits
First Bit of Byte Count - bit 9
CRC Generator - CRC-16

TABLE 4.2 BIT ORIENTED PROTOCOL PARAMETER SETTINGS

Code Type - ASCII
Synchronization Flag - 01111110
Header Length (after synchronization) - 2 bytes
CRC Generator - CRC-CCITT

Control codes are another aspect of the two protocols
which must be specified. The two stations exchange
information about their status and the condition of
received frames through the use of control codes. The
control codes must be translated so that each station only
receives control codes it will recognize. The required
control code translations for both protocols are indicated
in Table 4.3.

The exchange of data proceeds as follows. Station A
sends an initialization or enquiry message to Station B in
the form of a DDCMP Start Message Control Code. The frame
is received into the Station A parameterized protocol
convertor where the DDCMP Start Message Control Code is

410
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&ﬁ transposed into the SDLC Set Initialization Mode Control
¥

ﬁh, Code and routed to Station B. Station B receives the Set

Initialization Mode Control Code and initiates the systenm

gg' specified procedures for frame reception.
T When Station B is ready to receive data from Station A,
gz Station B responds to the initialization message with the
f? SDLC Nonsequenced Acknowledgment Control Code. The frame
iﬁﬁ is received into the Station B parameterized protocol

‘%{ convertor and transposed into the corresponding DDCMP
:-f control code, Start Acknowledge. Station A receives the
- Start Acknowledge Control Code and interprets it as an
fﬁ; indication that Station B is initialized and ready to

';: receive a data frame.

'EE Once both stations have indicated that they are ready
;’ to exchange data, Station A sends its first data frame.
gb{ The frame is received into the Station A parameterized
:aa protocol convertor for conversion to the SDLC format. The
?@ frame manipulation includes determination of the length of
~ the information field of the frame, detection of any data
9&\ which should be made transparent to the SDCL control code
;g detection circuity, and error control. As the frame is
" manipulated, it is passed out of the Station A
:)» parameterized protocol convertor to Station B. At no time
iﬁf is more than one byte of the frame stored in the Station A
;Eﬁ protocol convertor.
i;@ Once the entire frame is received at Station B, it is
® checked for errors. For purposes of illustration, the

ﬁ; block check characters indicate an error in the reception
:&2 of the frame. The SDLC Reject command code is the sent

;ii back to Station A by Station B indicating a request for
re-transmission of the last frame. The SDLC Reject command
3f: code is transposed to the DDCMP Negative Acknowledge
;: command code within the Station B protocol convertor and
3;3 passed to Station A.

.
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TABLE 4.3 CONTROL CODE TRANSLATION TABLE
X INDICATES DON’'T CARE.

Byte Count Protocol

Control Codes

Start Message
00000101 00000110

Start Acknowledge
00000101 00000111

Negative Acknowledge
00000101 00000010

Positive Acknowledge
00000101 00000001

92

Bit Oriented Protocol

Control Codes

Set Initialization Mode
1101X000

Nonsequenced Acknowledgment
11001110

Reject
1001 XXXX

Receive Ready
1000XXXX




IV Upon receipt of the Negative acknowledge, Station A

, re-transmits the initial data frame. This time the franme
. is received without errors and Station B replies with the
SDLC Receive Ready command code. The SDLC Receive Ready

comnmand code is transposed by the Station B convertor into

2o

the DDCMP Positive Acknowledge command code and sent back

- | et il
Pl g

n ./

to Station A. Upon receipt of the Positive Acknowledge

command code, Station A sends the next frame. The

‘-
L4
>
M

5.

processes cycles through the data frame transmission and

]
-

iy
-
-¥

acknowledgment sequence until all the frames are recejved
without errors by Station B.

j§ This is an example of conversion between one possible
‘gg combination of input and output protocols available with
" the parameterized protocol convertor. Any combination of
? the three framing technique protocols is available. A

.yl fast, yet flexible design is required to allow conversion
‘ﬁg between any combination of input and output protocols while
l?i at the same time avoiding becoming a bottleneck in the

. communication systenm.

;*f B. SYSTEM BLOCK DIAGRAM DESCRIPTION

fﬁ: A block diagram of a system architecture designed to

:2 provide this fast, yet flexible protocol conversion service
j{& is included as Figure 4.3, The major components of the

%; system are a data path controller and two protocol

ﬁg conversion units for each protocol supported. Of these two
:L conversion units per protocol, one interprets the incoming
:{; data stream, and the other manipulates the outgoing data
’tﬁ stream. The central data path controller acts as the

lﬁi coordinator of the conversion process, directing data

. between the different protocol conversion units and the

ﬁ%} external systems.

5ﬂ There are three types of inputs into the :ystem: the
?i protocol select inputs, the parameter inputs and the data
Q. inputs. The data inputs are the only dynamic inputs into
OS9S.
- 43
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ﬁ the system. They consist of the incoming frames to be
&L‘ converted into a different protocol and passed on to
] another coamunication station.
;é&é - The protocol select inputs and the parameter inputs are
;}ix static inputs. They are interpreted at initial systenm
i‘g ; start-up and set until the system is turned off or reset.
f)' The static inputs are comparable to the firmware used by
ﬁg‘ some system manufacturers to store the command sequences
,ﬂi and instructions in ROM (Read Only Memory).
i In operation, the input data is taken into the data
‘ path controller. The previously determined data path
:b; directs the data sequence to the selected input protocol
§§£ conversion unit. The data sequence is manipulated and
f%é passed back to the data path controller for redirection to
o the output protocol conversion unit. Here the data is
jiﬁ manipulated again and passed back to the data path
ﬁ;ﬁ controller. The converted data sequence is then passed out
?ﬁ' of the parameterized protocol convertor to the receiving
‘ communication station.
fﬁ: The protocol select inputs determine which protocol the
?ﬁf convertor should use to interpret the input data sequence,

: and which protocol the convertor should use to produce the
i) output data sequence. These inputs control the course of
;:ﬁi the data path. The use of a controlled data path pernmits
122: substantial flexibility in the selection of the input and
:§$ output protocols.
Z:l
@;: C. PROTOCOL CONVERSION WITH HARDWARE
iﬁ The protocol conversion process is centered both
::i conceptually and physically around an internal virtual

- protocol. The input protocol conversion unit interprets
i;} the input data according to its parameter inputs and
2; converts the pertinent aspects of the input data into the
123 virtual protocol format. The virtual protocol formatted
“; data is then transferred back to the data path controller
2
":::; 45
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2 for direction to the selected output protocol conversion
§~ unit. The output protocol conversion unit accepts its
input in the virtual protocol format, and converts the data

X to the desired output protocol.

3y Selection of the virtual protocol is the key to the

.§ simplification of the conversion process. This

' simplification in turn allows the use of a less

? sophisticated but faster logic system. A complex virtual

3 protocol which is only used internal to the protocol

convertor reduces the amount of dynamic flexibility

required in the conversion process. If the majority of
variations between protocols can be represented with the

;g internal virtual protocol, a minimum of dynamic external

j inputs to the conversion operation are needed. Any dynamic
e inputs to the conversion process can be viewed as probable
; sources of delay because of the requirement to interpret
oS the inputs while the process is being executed.

Conversion between relatively similar protocols is
straight forward; only minor differences have to be
accounted for. Conversion between protocols using
different framing techniques is more complex and
subsequently more difficult to implement with a virtual
protocol. The different framing technique protocols vary
! on their frame formats and how information is specified.
To aid the virtual protocol selection process, the
'5 protocols and their compared functions can be viewed as a

three dimensional array. See Figure 4.4. The array has
) the functions to be compared on one dimension (Y axis}, the
| three different framing technique categories on another
o) dimension (X axis}, and the same message framing technique
>' category protocols on the third dimension (Z axis}.
e The differences between various implementations of the
same framing technique category can be parameterized.
These differences include minor variations of the same

<

AL Y Ve T Y=

basic function. For example different implementations of
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character oriented protocols may use different bit
sequences for the synchronization character used in
framing. Static values for each of these parameters are
input into the two protocol conversion units in use.

The common aspects of the various framing technique
categories can be implemented in the internal virtual
protocol, Keeping in mind the popular implementations of
each framing technique. For example, both bit oriented and
character oriented protocols use a special flag or
character to mark the beginning and end of frames. A
similar flag is implemented in the internal virtual
protocol to accommodate the sub-function of framing.

The process of protocol conversion requires some, but
not all of the sub-functions performed by the two protocols
involved. All of the sub-functions are performed by the
communication systems external to the protocol convertor,
and many of the protocol sub-functions require
sophisticated circuitry. Redundant implementation within
the protocol convertor of any sub=function not implicitly
required for the conversion process will reduce the speed
of conversion from its optimunm.

The protocol convertor performs only those
sub-functions of the protocol necessary to convert from one
protocol to another. For example, the sequence numbers of
the exchanged frames are tracked by the external
communication systems. The sequence numbers are an
indication to the external communication systems of the
order of the exchanged frames. The sequence number of a
frame lost to noise corruption or which was misdirected
will not be received. Any subsequent sequence number
received will be out of order and will indicate to the
receiving communication system that a frame was lost.

To implement sequencing as part of the protocol
convertor would require a more sophisticated logic system

and subsequently a reduced throughput of data. In Keeping
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with the filter concept, the protocol convertor manipulates

the sequence numbers in the same way as any other data, and
passes them though to the receiving station of external
communication system. With or without the protocol
convertor, it is still the responsibility of the external
communication system to interpret the frame sequence
number. This includes detecting any out of sequence frames
and requesting a re-transmission of the lost frames.

The sub-functions required in the protocol conversion
process include:

- Framing.

- Transparency.

- Error Control.
All three of the sub-functions are part of the data link
layer of the ISO OSI reference model. It is the data link
layer that segments the input data into frames and
transforms the raw transmission faclility into a
communication channel which appears free of transmission
errors [Ref. 2:p. 17).

The protocol conversion process requires the framing
sub-function because both input and output protocol
conversion units must be able to differentiate between the
three major framing techniques; character oriented, byte
count, and bit oriented. The input protocol conversion
unit must recognize where the frames of data and the
separate characters within the frames of data begin and
end. This recognition is necessary to convert the input
data into the internal virtual protocol. The same
capabilities are required of the output protocol conversion
unit. The output protocol conversion unit must be able to
recognize the character and frame boundaries of both the
internal virtual protocol and the output protocol.

The framing sub-function is realized by the insertion
of special bit sequences in the input data by the
transmitting station to indicate the beginning of a frame.
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When these bit sequences are detected at the receiving
station, the two stations can be synchronized. Knowing the
starting bit of the first character, the receiving station
can then divide the succeeding data stream into word length
groups of bits at the correct boundary points. Since
synchronization bit sequences typically occur at the
beginning of a block of data, frame-to-franme
synchronization is established simultaneously with
character-to-character synchronization (Ref. 19:p. 179].

The internal virtual protocol of the protocol convertor
uses a bit oriented framing technique. The bit stuffing
used by the bit oriented framing technique is the most
flexible of the three major framing techniques, because it
does not require a set character length in bits. Being the
most flexible, the bit oriented framing technique is also
the most popular, and using the most popular framing
technique in the internal virtual protocol reduces the
variation between the average expected input or output
protocol. There is a high probablility that elither the
selected input protocol or the selected output protocol or
possibly both will be of the bit oriented framing
technique. Reducing the difference between the expected
input and output framing technique and the internal framing
technique decreases the number of variations which must be
absorbed within the virtual protocol, and subsequently
passed on to the output protocol.

The various protocols of the three different framing
techniques delineate frame by defining a special
synchronization character. The synchronization character
is called a sync in character oriented protocols and byte
count protocols. 1In bit oriented protocols the

synchronization character is called a flag. .
The major difference between the different framing
techniques is selection of the sync/flag character and the

mrethod used to determine the length of the data frame,
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Character oriented and byte count protocols typically use

the ASCII! character SYN for synchronization. Bit

oriented protocols typically use the bit stream 01111110 as
a synchronization flag. Character oriented and bit
oriented protocols mark the beginning and end of a frame
with control characters or flags. Byte count protocols
indicate how many characters are in a frame with a byte
count in the frame header.

The sync/flag character is chosen so that its bit
arrangement is significantly different from any other
anticipated character which is regularly transmitted. The
sync/flag character must have an irregular pattern so that
any likely combination of characters before or after the
sync/flag will not appear to the system as a sync/flag
character. For example, the ASCII character SYN typically
used by character oriented protocols and byte count
protocols consists of the bits: 10010110. An irregular
pattern reduces the probability of the communication systenm
synchronizing its operation with the wrong bit sequence.
Interpretation of the wrong bit sequence as the
synchronization character would lead to the
mis-identification of which groups of bits constitute
characters and which groups of characters composed frames.

The second sub-function necessary for protocol
conversion is transparency. Transparency is the
sub-function that permits the transmission of data that
would otherwise be interpreted as a control character. The
bit sequence of a control character may need to be
transmitted within a frame, as binary data, without its
usual framing significance. Transparency allows these
characters or bit strings to pass through the protocol
convertor without triggering the protocol framing
mechanisnm.

o

American Standard Code for Information Interchange
is a seven bit plus parity code established by the American
National Standards Institute.
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N
E%ﬁ Character oriented protocols and bit oriented protocols
N use a procedure called ‘stuffing’ to delineate those
! characters which could be incorrectly interpreted as
‘%:2 control characters. In character oriented protocols, a
f;% control character DLE is inserted before any byte of data
?ti which has the same bit pattern as a control character, but
?5: should not be interpreted as a control character.
iy: Inserting a DLE into the data stream is called ‘character
iﬁ% stuffing.’” Bit oriented protocols use a similar method to
ﬁf} del ineate transparent data. A single zero is stuffed into
the data stream whenever five successive ones are detected
?;{: in the data stream. The stuffed zeros prevent the receiver
:Iﬁﬁ from interpreting binary data within the text field of the
;:2: frame as the end of frame flag.
;; In order to function properly, the protocol convertor
%L must be able to recognize transparent data as such. The
circuits necessary to strip out stuffed bits and characters
’J must be present in both the protocol convertor and the
" external communication systems.
'ﬁ& The sub-function of transparency is in keeping with the
E@; concept of the protocol convertor as a filter with limited
i%ﬁf flexibility. The control characters are filtered out from
the transparent data, interpreted and passed out of the
¢ i convertor in the output protocol. The character or bit
tﬁﬁ stream to be stripped out by the input protocol conversion
;ﬁ% unit is one of the parameter inputs, as well as the
[ ] character or bit stream to be stuffed back into the data
oy stream by the output protocol conversion unit.
; The sub-function of error control must be implemented
(;ﬁi by both the protocol convertor and the external
.2 communication system. Error detection is performed by the
§ﬂf protocol convertor in order to generate the required block
im N check character for the output protocol. The output
%Q‘ protocol conversion units must be able to generate various
‘v; block check characters as required by the output protocol
o 52
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3;; parameters. For example, if the input protocol specifies a

%;g CRC-16 method of error detection and the output protocol

f" specifies a CRC-CCITT, the protocol convertor must be

RN capable of generating the required block check character

EE; from the input data streanm.

}ig ‘ The detection of any errors in the input data stream

;‘} must first be accomplished before the expected output

tﬁ; protocol block check character is generated. Generating an

‘;fi output protocol block check character without first testing

3$f the input data stream for errors would indicate to the

fA receiving station that all frames were error free, at least

kﬁ} up until they passed through the protocol convertor.

;&: Without error detection on the part of the protocol

{{3 convertor, corruption of the message data that took place

P before the input data entered the protocol convertor could
- not be detected by the external communication systenm.

?ff The physical location of the protocol convertor

- relative to the two communication stations will also

determine the need for error detection by the protocol

1j} convertor. If the protocol convertor is physically located

Eg; with the transmitting unit of the external communication

:{ﬁ system, with a minimum length of noise susceptible

ol communication channel between the convertor and the

Lf?, transmitting unit, the number of errors inserted into the

E&f' data stream before the data stream reaches the protocol

i%ﬁ convertor will be minimal. The guarantee of a relatively
“‘ noise free channel for the input data before the data

{iﬁ reaches the protocol convertor would remove the necessity

'Eﬁi for error detection on the part of the protocol convertor.

;j%& The message data received from the adjacent communication

"m system could be assumed to be error free, and the

gg; conversion done without any concern for error detection

;ﬁi within the protocol convertor. The only error control

;Qj capabilities required in this case would be a block check

'i€: character generation capability by the output protocol

& 33
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?3& conversion units. The physical location of the protocol

%&Ey convertor anywhere other than adjacent to the transmitting |
( station would require implementation of the full range of

:-‘ the error control sub-function within the protocol

convertor, including both error detection and block check

i
> ’
n) character generation.

;:) The sub-functions of line control, time-out control,

f Y sequence control and initialization are all employed by the
T ' external communication system. They are protocol specific
yﬁi only in the particular characters required to originate the
_ sub-functions. These symbols are converted by the protocol
ﬂ;& convertor, just like any other message data, with no

%i:% special significance attached. If the sub-functions are
,€§j implemented with information only control codes, their

° conversion is accomplished with a translation table. The
3;; inclusion of these sub~functions in the protocol convertor
$~4 would be redundant.

V‘ The external communication system determines the i

direction of data movement, that is which station is to

:?F transmit, and which station is to receive. There is no )
H$§ requirement for the protocol convertor to be engaged in the
?&k line control sub-function. A single protocol convertor can
only manipulate the data stream in one direction,
‘v; therefore, two separate protocol convertors would be
‘3&% required for a two-way exchange of data. The use of two
i?{d independent protocol convertors also allows full duplex2
operation if the external communication system is also
ﬁ%& : capable of full duplex operation.
:&QZ The concept of the protocol convertor as a static
f%%- filter implies that dynamic initialization of the protocol
= convertor by an input data stream should not be required.
, The protocol convertor is always ready to operate, with its
4 specifics of operation indicated by parameter inputs.
o

, ""ZEGIi'EG'in is defined as simultaneous two-way
independent transmission in both directioas.
(Ref. 3:p. 306
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ﬁ? The initialization of the stations of the external

communication system takes place through the protocol
convertor, without the protocol convertor itself requiring
any initialization.
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? D. PROTOCOL CONVERSION UNITS

; The input and output protocol conversion units are

ﬁg similar in design and operation. See Figure 4.5. Both are
23 designed with a series of registers, programmed logic

EE arrays (PLA) and control gates. Together, these provide

i the capability to convert between the input protocol, the
fﬁ internal virtual protocol, and the output protocol.

‘g Although more complicated than the controlled data path,

’3 the conversion process is still simple enough to avoid the
‘:' use of relatively slow microprocessor controlled logic.

Within the protocol conversion units, the input data is

o
AL

split into four paths. One path goes to the transparency

o

?; sub-function shift register, one to the framing

b sub-function shift register, one to the error control
:j circuit and one to the control code translation shift
iﬁ register.

ZE The framing circuit detects the synchronization

character or flag and generates signals to help segment the

O

subsequently received data in word length groups. The

»
v

?i; transparency circuit detects and strips any stuffed

qﬁ characters or bits in the incoming protocol conversion

‘& units. In the output protocol conversion units, the

b transparency circuit detects any data that should be made
fé transparent to the external communication system and marks
‘%Q the data as such by stuffing characters or bits as

}; appropriate. The error circuit generates or checks the

A5\ block check characters depending on its use in an input or
;i an output protocol coanversion unit.

5; In operation, the input protocol conversion unit is

~¥

LN

initially operating in a sync or flag search mode depending
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35 on the input protocol selected. The conversion unit checks

b4 each word length group of bits of the incoming data stream
for the expected sync/flag character. The input data is
clocked into a shift register a bit at a time. After each

? bit is clocked in, one word length of the bits in the shift

. , register are compared with a stored bit image of the

. sync/flag character. A bit for bit match indicates that

the sync/flag character has been received.

Once the sync/flag character is detected, the input
protocol conversion unit starts interpreting each
successive word length of bits as a single character. This
continues until the indicated number of bytes/characters
have been received in the case of a byte count protocol, or
the ending control character or flag is detected, in the

LSRN N

case of character oriented and bit oriented protocols.

ot P

Multiple sync/flag characters are typically sent by the
transmitting unit to insure synchronization of the framing

O
« ax .

sub-function, even if one sync is disrupted by noise in the

communication channel. Each sync/flag character is

‘el

detected by the protocol conversion unit, the first one
received which is followed by other than another sync/flag

>

character is used for synchronization.
The sync/flag search circuitry of the protocol

o

conversjon units consists of a shift register, a storage

PP
-

register to hold a bit image of the expected sync/flag
character, and a PLA dedicated to detecting equivalence

e
-

between the two registers. The sync/flag search circuitry

Silal

for all three different framing techniques protocols is
?E basically the same with slight variations which are
§ described below.
' In the character oriented protocols, a special
K~ synchronization character SYN is used to indicate the
& beginning of a frame. The specific bit sequence for the
‘S character SYN is a parameter input which is set before
t operation. Parameterizing the bit sequence of the SYN
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character allows for variations between the different

implementations of character oriented protocols.

To implement detectors for all the control characters
used in character oriented protocols requires a storage
register for each character bit image to be detected. Each
bit of each storage register must be compared to its
corresponding bit in the first word length of bits of the
input shift register with a detect PLA. The output of the
detect PLA is used to flag the detection of its associated
control character.

Byte count protocols, like character oriented protocols
use a special synchronization character SYN to indicate the
beginning of a frame. However, unlike character oriented
and bit oriented protocols, there is no control character
or flag to indicate the end of a frame. The header of a
byte count protocol frame includes a byte count indicating
how many of the bytes following the header are part of the
information field of the franme.

Implementation of the framing sub-function in byte
count protocols is the same as for character oriented
protocols, except there is only one control character to be
detected. The input data stream is clocked into a shift
register and compared to a stored bit image of the expected
sync character with a detect PLA. Once a sync character is
detected, the next byte is interpreted as the class of the
message, and the fourteen bits after that are the byte
count. The byte count is read and used to set a counter to
Keep track of the length of the information field of the
frame.

Bit oriented protocols also use a special character
called a flag to mark the beginning of a frame. The same

E N flag is used to indicate the end of a frame, and

&E: consequently it can also be interpreted as the beginning of
Ei; the next frame. The use of the same flag to indicate the

[ beginning and the end of a frame is very economical in the
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use of hardware. There is only one control character or

flag to be detected. Only one storage register is required
to store the expected flag bit image, and only one detect
PLA is reguired to detect a match with the bits in the
shift register.

The bit image of the flag is a parameter input. The
parameterization of the bit sequence allows for variations
between implementations of bit oriented protocols.

Bit oriented framing is like character oriented framing
in that special characters are used to indicate the
beginning and end of a frame. The two framing techniques
are different in that character oriented framing requires
several different control characters. Character oriented
framing requires one control character for indicating the
start of a frame, one for the start of a frame header,
another to indicate the start of the text field, another to
mark the end of text field, etc. Bit oriented framing only
uses one special character called a flag to delineate a
frame. The same character is used to mark the beginning
and the end of a frame. This produces fewer control
characters to be considered in the transparency
sub~function.

The transparency circuit within the input protocol
conversion unit strips the stuffed bits and characters from
the input data and converts the remaining data to the
internal virtual protocol. Before passing the virtual
protocol data stream back to the data path controller, an
extra control bit, added to each byte, is set to indicate
the transparent data to the output protocol convertor.

The output protocol conversion unit interprets the control
bit of the internal virtual protocol and then converts the
remaining data to the output protocol. Bit stuffing or
character stuffing is then performed on the data as
required by the indicated output protocol.
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Character oriented protocols use character stuffing to
prevent data from being interpreted as control characters.

A control character DLE is reserved for indicating which

o bit sequences should not be interpreted as control

gé characters, despite their usual control significance. When
éiA a DLE character is received, the control character

E)‘ detection mechanisms are turned off while the next eight
2 bits are shifted into the system. That way, the character
'F¥ following a DLE is Interpreted as data, no matter what the
’Eﬁ bit sequence. The stuffed DLE’s are stripped out of the
g data stream by the receiving circuit and are not included
ft\ in the block check character.
:?: The detection of the control character DLE is

#§; accomplished in the same manner as the detection of the

:' other control characters used in framing in character

;1 oriented protocols. As the input data stream is stepped
o into a shift register, one word length of bits is compared

with a stored bit image of the DLE character using a detect
PLA. The output of the PLA is used to indicate the
i§. detection of a DLE and to turn off all control character

: detection circuits (including itself) during the next eight
_$a bit shifts.
I Byte count protocols do not use the same circuitry for
the transparency sub-function. Once the initial
synchronization character is detected, and the number of
bytes in the information field read from the header, no
more control character detection is required until the
L frame is completed. A counter is set with the byte count
read from the frame header and decremented with each byte

(MY

that passes through the shift register. Any bit pattern

7

'iﬁ received during the delineated information field is
;' interpreted as other than a control character. The SYN
259, character is the only control character used in byte count

s

2

protocols, and the detection circuitry for it is turned off
for the duration of the reception of the information field.

Vl
ey
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Bit oriented protocols use bit stuffing to prevent data

from being interpreted as the flag character. The typical
flag character bit sequence is 01111110. Any sequence of
five ones in other than a flag character is separated from
subsequent ones with a stuffed zero. The stuffed zero is
interpreted as such by the receiving circuitry and stripped
out before the bit stream is translated into a character.

In the bit oriented input protocol conversion unit, a
detect PLA is used to search for any set of five sequential
ones as the data is clocked into a shift register. Another
register is used to hold the bit image of five ones, and is
compared with the first five bits clocked into the shift
register. When five consecutive ones are detected, the
following stuffed zero is stripped from the data stream.
The bit stripping takes place before the eight bits are
compared against the bit image of the synchronization
flag. A detect PLA is used instead of random logic to
allow for the implementation of various flag characters.

In the bit oriented output protocol conversion unit,
another detect PLA is used to search for a set of five
consecutive ones in the data stream before it is returned
to the data path controller. If five ones are detected, a
zero is stuffed into the data stream following them to
prevent the five ones and any subsequent ones from being
erroneously interpreted as the synchronization flag by the
external communication systen.

According to McNamara [Ref. 3] Cyclic Redundancy Checks
(CRC) are considered to be the most effective means for
detecting transmission errors in serial data. CRC use a
feedback arrangement to combat the tendency of errors in
information transmission systems to occur in burst.

The output of the CRC depend collectively on all the
digits received in a single frame. Any single digit of a

frame received in error makes the enti- frame useless.
The arrival of a digit is recorded in tages of a shift
61
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*@iﬁ register and manipulated as subsequent digits are

&»: received. Once an entire frame has been received, the
{ status of the shift register segments are used to determine
;il if any of the digits were incorrectly received.
;E§$ Figure 4.6 illustrates the three parts of the CRC; the
i:ﬂ message data to be transmitted, the generator polynomial, .
-‘) and the constructed message which is actually sent. The
;5;: constructed message consists of the desired message data
f&; plus a series of M bits called the block check characters.
i%ﬁ The block check characters are generated by appending M

zeros to the message data and dividing the appended message
?'“ data by the generator polynomial. The division is actually
1) the X-OR function between the K bit generator polynomial

k>

fE‘ and K bit sections of the appended message data. The

lo 7 resulting quotient is discarded and the remainder becomes

:%ﬁ the block check character. The block check character bits

;:&: are then added to the message data to form the constructed

sﬁg mRessage. 4

i A CRC generator produces the block check character and

Pt

]
~ I ab W a NS W W
a

appends it to the message data before the constructed
message is transmitted. At the receiver, the CRC shift
register performs a similar division operation, where the

»

S

) received constructed message is divided by the same

f;f generator polynomial. See Figure 4.7. Once the division

" {ﬁ is completed, if the quotient contains a remainder, there
"~

o was an error in the constructed message received. That is,

(-  the message data or the block check character was received
32& incorrectly, and the message must be discarded.

® : Several generator polynomials have been accepted as

§q?g standards for different length words. Table 4.4 list the

jlwl e

L three most coamon.
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Exanple Generator Polynomial: 10001

Example Message Data: 10010110
Appended Message Data: 1001011000000

Division of Appended Message Data by the Generator
Polynomial:
100111111 Quotient (discarded)
10001 /fl 001011000000
1 0001
11110

10001
11110

10001
11110

Block Check Character: 1

Appended Message Data: 1001011000000
Block Check Character: + P11 1
Constructed Message Data: to001011001111

Figure 4.6 CRC Block Check Character Generation
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Example Generator Polynonmial: 1 0001
Constructed Message Data: 1001011001111

Division of Constructed Message Data by the Generator
Polynonmial:

1 00t 1 1111 Quotient (discarded)
10001 /'l 00t1o0o11001 111

Remainder:

Figure 4.7 CRC Error Detection
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TABLE 4.4 COMMON CRC GENERATOR POLYNOMIALS

CRC-12 = X!2 4 xt! + x3 + x2 + x! + 1
crc-16 = x!8& + x15 + %2 + 14
CRC-CCITT = X16 + x!2 + x5 +

the CRC-CCITT and
The length
is the same as the length of the burst of

The CRC-12 is used with 6-bit characters,
CRC-16 are used with 8-bit character systems.
of the polynomial
errors that it can detect with 100% assurance. Any burst
of errors longer than the polynomial can be detected with a
99.9% assurance. A sixteen bit checksum such as CRC-1i6 or
CRC-CCITT will detect all single and double errors, and all
{Ref. 132]

Most of the currently popular protocols require the

errors with an odd number of bits. 2:p.
initialization of the CRC shift register to zero before
shifting the data through.
procedure are the SDLC and HDLC protocols.

Two exceptions to this

They both

in the shift register segments of
the

regquire a preset value
is shifted through,

in the transmission and reception of the frame is

one. Once the frame indication of
no errors
a special nonzero result in the shift register segments.
The initialization of the CRC shift register is one of the
parameter inputs, with the default value being all zeros.

There are slight but significant differences between
the conversion unit circuits depending on their use. These
variations are required by the differences between the
three framing technique protocols.

The framing circuit of the input protocol conversion
unit detects the synchronization character for the
character oriented and byte count protocols, and the
synchronization flag for the bit oriented protocols. After
detecting the synchronization character or flag, the
framing circuit inserts a copy of the virtual protocol flag

in the data sequence.

65

ot T LT T T T T TRty e e e
Volittarg (et A AT Rt R R iy \ ~ o

RN |




The input protocol conversion unit for the character
oriented protocols detects the single occurrence per frame
of the characters SYN, ETX and ETB. 1If there is a double
occurrence and detection of the SYN character, the last SYN
to arrive is used for synchronization. The input protocol
conversion unit for the byte count protocols detects the
occurrence of the SYN character only. The input protocol
conversion unit for the bit oriented protocols detects the
occurrence of the synchronization flag. The
synchronization flag occurs twice per frame in bit oriented
protocols. The framing circuit for the bit oriented
protocols must remember the first occurrence of the
synchronization flag to interpret the second occurrence as
the end of the frame flag.

The transparency circuit of the input protocol
conversion unit detects and strips stuffed characters or
bits in the character oriented and bit oriented input
protocol conversion units. In the byte count input
protocol conversion unit, the byte count in the frame
header is determined by the transparency circuit. A count
is kept of the subsequent bytes that pass through the
transparency circuit shift register, and a virtual protocol
flag is appended to the frame once the prescribed number of
bytes have passed through.

The error control circuit of the input protocol
conversion unit checks the block check characters of the
incoming frame, for all three types of protocols. The
generator polynomial used is typically different for the
three types of protocols. The location of the input
protocol conversion unit relative to the transmitting
station determines the requirement for setting a control
bit if errors are detected. If the unit is located
adjacent to the station with a minimum of error susceptible
channel between them, no indication of errors is necessary

from the input protocol conversion unit.
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The control code translation circuit of the input

protocol conversion unit converts the information control
codes of the input protocol to a generic set of codes used
in the virtual protocol. The three types of protocols use
different control codes for transfer of the same control
information, requiring a separate translation table for
each protocol type.

The framing circuit of the output protocol conversion
units detects the virtual protocol flag inserted by the
input protocol conversion unit and replaces it with the
synchronization character or flag required by the specified
output protocol.

The transparency circuit of the output protocol
conversion unit for the character oriented protocols
detects the occurrence of any control code bit sequence in
the text field of the frame. A DLE character is then
inserted before any control code sequences occurring in the
text field of the frame by the output protocol conversion
unit. The transparency circuit of the output protocol
conversion unit for the bit oriented protocols detects the
occurrence of five consecutive ones in the data stream to
be returned to the data path controller and stuffs a zero
into the data stream immediately following the five ones.

The error control circuit of the output protocol
conversion unit for all three types of protocols generates
the block check characters required by the specific
protocol and appends them to the message data. An
indication from the input protocol conversion unit of an
error in the input data in the form of a set control bit
causes the error control circuit of the output protocol
conversion unit to invert the bits of the block check
character. Inverting the bits of the block check
characters virtually guarantees a subsequent arror
indication by the receiving station of the external
communication system.
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&f} The control code translator circuit of the output
P% protocol conversion unit detects the generic information
'{ control codes of the virtual protocol inserted by the input
}5£ protocol conversion unit. The virtual protocol control
ﬁfﬁ codes are converted to the control codes of the desired
;%i output protocol through the use of a translation table.
':{,
o E. COMMON CIRCUITS
kﬁ% The data path controller circuit is a simple circuit
R for directing the flow of data within the protocol
convertor. The protocol select inputs are interpreted with
.{fé a decoder and use to control four multiplexers. See
3E$f Figure 4.8. The first pair of multiplexers direct the
%F& input data sequence to the desired input protocol
® conversion unit, and select the return line from the same
{N3 input protocol conversion unit to return the results to the
5@; data path controller. The second pair of multiplezers
:?32 determine which output protocol conversion unit will be
A>_' used, and select the return line from the same output
'%f: protocol conversion unit to return the manipulated data
EQE: sequence to the data path controller. The desired data
;Eg path is determined by the selection of transistor
C) switches which are opened and closed according to the
ﬁi protocol select inputs.
jﬁ; Several circuits are common to both input and output
ﬁ%& protocol conversion units, in all three framing technique
i" categories. The detection function provided by the detect
ﬁfﬁ PLA is required in each input and output protocol
:ﬁﬁ conversion unit. In keeping with the concept of the
*’§ protocol convertor as a filter operating at sufficient
L2 speeds to avoid becoming a bottleneck in the system, an
%f{ﬁ optimum design is required. Optimizing the most prevalent
‘:%3 circuit with regard to minimum clock period and minimunm
3fji surface area should ultimately produce a smaller, faster
i protocol convertor.
>
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The character oriented protocol conversion units
utilize the detect PLA circuit the most. The character
oriented input protocol conversion units use it for
searching for the synchronization bit sequence SYN and the
transparent data marker DLE in the input protocol
conversion units. The character oriented output protocol
conversion units also use the detect PLA to search for data
sequences that resemble control characters.

The detect PLA is used in the bit oriented input and
output protocol conversion units to search for the
synchronization flag and any set of five consecutive ones.
The byte count input protocol conversion units, like the
character oriented input protocol conversion units, use the
detect PLA to search for the synchronization bit sequence
SYN.

In operation, the detect PLA compares two different
data sequences and gives a positive indication if there is
equivalence between the two. Each individual bit of the
input data stream is combined in the PLA with the
corresponding bit of the bit image of the character to be
detected using the X-NOR function. See Figure 4.9. If the
two bits are identical, the X-NOR function produces a
high output, otherwise it will be low. Within the PLA, the
output of the eight X-NOR functions are combined together
with an AND function. The output of the AND function
indicates if the expected sync/flag character was
received. If all the bits in one word length of the shift
register match the bits of the stored sync/flag character,
each of the X-NOR functions will output a high value to the
input of the AND function. The subsequent high output of
the AND function indicates the sync/flag character has been
received. Any bit in the shift register which does not
match the corresponding bit of the stored sync/flag
character will cause a low value to be sent from the X-NOR
function involved to the AND function. A low output of the
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Figure 4.9 Detect PLA Functional Equivalent
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AND function indicates that least one bit of the current
set of bits in the shift register does not match the bit
image of the expected sync/flag character.

PLAs are preferred over random logic in circuit design
for several reasons. Using a PLA allows for the
implementation of changes in the logic of the circuit,
without requiring the redesign of the entire system. The
shape and size of a PLA is dependent only on the number of
inputs and outputs and the number of product terms required
to implement the desired function, so any changes in the
logic required of the circuit can be accomplished by just
redesigning the PLA. If the system is designed with some
slack as to the area occupied by a PLA, minor changes can
be absorbed without effecting the rest of the systenm.

In some implementations, the use of a PLA can increase
the speed of operation of the circuit. The minimum clock
period of a circuit is determined by the longest signal
path. The longest signal path should produce the longest
delay in a circuit. If by using a PLA the longest signal
path is shortened, the clock period can be reduced. A
shorter clock period equates to a faster circuit.

One drawback of PLAs is the number of transistors
required to implement the circuit. Depending on the
function implemented with the PLA, the use of a PLA may
require more transistors for the overall circuit, even
though the longest signal path is shorter. An increase in
the number of transistors requires more area on a chip for
the circuit.

To determine the best method of implementing a circuit,
the advantages and disadvantages of using PLAs must be
weighed against each other, for the particular logic
function desired. In designing the detect PLA the speed
and area factors of a PLA as compared to a random logic
version of the same circuit were considered.
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Four different PLAs were compared with each other and

the random logic equivalent. The random logic equivalent
was used as a standard for comparison. The clocked input
driving circuitry, which is similar for each, was not
considered for either the PLAs or the random logic
circuit.

To implement the detect circuit with random logic
requires three NOR gates and two inverters for each pair of
bits to be coampared. One multiple input AND gate is
required to collect the NOR gate outputs. See Figure 4.10
and Figure 4.11.

—’) AeB

Figure 4.10 Random Logic Detect Circuit for Two Bits

The NOR gates, and the inverters requires two transistors
each for a total of ten transistors to implement the X-NOR
function between two bits. The multiple input AND gate
requires a transistor for each input and one more for the
pull-up transistor. A sixteen input detector circuit which
would detect equivalence between two sets of eight inputs
would require a eighty transistors for the X-NOR function
and nine for the AND function, for a total of eighty-nine
transistors. The longest signal path is eight transistors.
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Figure 4.11 VLSI Implementation of a Random Logic
Detect Circuit for Two Bits
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There are many different ways of implementing the

detect circuit with a PLA. The equivalence function can be
partitioned into any combination of pairs of bits. Each
bit pair can be tested for equivalence independently of all
the other bit pairs. The only requirement for the grouping
of the inputs is that any two bits to be compared must both
use the same PLA.

The detect circuit calls for the comparison of eight
pairs of bits which can be accomplished in four symmetric
methods. The first method is a single PLA with eight pairs
of inputs and one output. The second method is two PLAs

X with four pairs of inputs each and an AND gate to tie

\ together their outputs. The third method is four PLAs with
E two pairs of inputs each and a four input AND gate. The

) fourth method is eight PLAs with one pair of inputs, and an
. eight input AND gate. The single pair input PLA is

f included only for completeness.

§ The longest input path in the PLA implementation of the
the X-NOR and AND functions is a function of the number of

inputs. There is one more transistor in the longest signal

‘é path than there are inputs to the PLA. See Table 4.5. The
:f longest signal path for a single bit in the random logic

N implementation of the circuit is eight transistors. The

Q number of transistors in the longest signal path is only

:_ part of the consideration. What type of gates those

)% transistors compose, and how many of the inputs to those

gates are active at one time also has an effect on the
total time required to transverse the longest signal path.
The length of the longest signal path can be measured

T

» in single inverter delay units or channel transit time

[ tau. For small V4.

.
oy
o 2

Js tau = L%/UxV 4
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Where L is the length of the gate in centimeters, U is the

mobility of the electrons in centimeters squared per
volt-second, and Vds is the voltage difference between
the drain and the source of the transistor in volts.
(Ref. 201

The NOR gate is the principal building block of the
random logic detect circuit, and all of the NOR gates used
have two inputs. The delay induced by a NOR gate is a
function of the number of active inputs. The detect
circuit is used primarily to detect the synchronization
characters or flags, which occur on the average of twice
per frame; twice at the beginning, or once at the beginning
and once at the end. If the average total number of bytes
in the frame is much greater than two, ninety-nine percent
of the time the circuit will be indicating no equivalence.
This means at least one of the eight pairs of bits will not
be the same ninety-nine percent of the time. Considering
an equal probability of receiving a one or a zero at any
time, there is a fifty percent probability of the two
inputs to a NOR gate being the same and a fifty percent
probability of the two inputs being different. If the two
inputs are both low, there is no delay experienced by the
signal. This occurs twenty-five percent of the time. If
one of the inputs is low, and the other one is high, the
signal will experience a single tau delay. This occurs
fifty percent of the time. If both of the inputs are high,
the signal experiences a delay less than tau. This also
occurs twenty-five percent of the time. Therefore, the
signal will be experiencing a single tau delay or less
through each NOR gate of the circuit.

The delay imposed by a NAND gate is proportional to the
number of inputs, regardless of the state of the inputs.
As the number of inputs to a NAND gate is increased the
length of the pull-up transistor area must be increased
proportionally. As the area of the pull-up transistor is
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increased, the amount of delay imposed on the signal is

also increased.
ta“NAND = nkxtau .

Where n is the number of inputs.

Using more PLAs of fewer inputs reduces the length of
the longest signal path internal to the PLA. But, with the
addition of another PLA comes the requirement for an NAND
gate to combine the outputs of the multiple PLAs. The
delay imposed on the signal by the NAND gate is
proportional to the number of inputs, causing the total
delay to actually increase as the number of PLAs is
increased past four. The delay experienced by the signal
through PLA is shorter when more PLAs of fewer inputs are
used, but the additional delay imposed by the requisite
NAND gates negates any gains achieved by using more than
four PLAs. 4

A unique minimum could be determined if the equivalence
function could be partitioned into continuous numbers of
inputs. However, the discrete partitioning of the
equivalence function produces numbers of inputs of powers
of two only. Table 4.5 indicates a local minimum at four
PLAs with two pairs of inputs each.

The number of transistors used in the implementation of
the detect circuit with a PLA is a function of the number
of inputs. If Kk is the number of inputs into a single PLA,
the total number of transistors T required to implement the
logic of the PLA alone, not including any input or output
drivers is:

T = Ck + 1)%2K/2

This relationship imposed on the discrete numbers of inputs
allowed by the partitioning of the equivalence function is
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presented in Table 4.6. The random logic implementation of

fé. the detect circuit requires eighty-nine transistors.

" Related to the number of transistors in each PLA is the
fq . area the PLA occupies on the chip. Circuit areas are

1&? typically measured in square length units. The length unit
jgi is defined as the fundamental resolution of the fabrication
L’. process.

b . +« . (the length unit) is the distance by which a

2 Jay S trar tees shotner Sebaetical Reatutt SRORETARL
ol Tagred and th Spas bpr tate  s2Fe%y Fat¥or 55358

' (Ref. 20:p. 481.

e The areas of the different PLA implementations are

a§ presented in Table 4.7. The area of the random logic

%?‘ implementation of the detect circuit is approximately

) thirty-six thousand square length units.

f, When considering speed of operation and the area

&ﬁ occupied by the circuit, four PLAs with two pairs of inputs
kﬁ each produce the optimum design. Although eleven percent
o slower than the random logic design, the four PLAs occupy

A approximately two thirds of the area, and use almost

x$‘ : exactly the same number of total transistors. The design
‘SQ flexibility incurred by using PLAs is another factor in

» their favor.

;& Each output protocol conversion unit requires a Cyclic
hE Redundancy Checks (CRC) shift register to generate block
:5$ check characters. The input protocol conversion units also
‘z require CRC shift registers if the protocol convertor is to
T be located anywhere other than physically adjacent to the
;ﬁ transmitting station of the external communication system.
3& The input protocol conversion units use the CRC shift

%ﬁ registers to check the input data for errors.

The CRC shift register circuit is the same for both the
input and the output protocol conversion units. Error
detection is accomplished with the same basic circuit as

block check character generation. There are some
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:k peripheral differences required by the difference in the
Rﬁ? detection function and the generation function.
(*@i A CRC shift register is a shift register with an X-OR
. gate inserted between each stage of the shift register.
’&jﬁ See Figure 4.12 and Figure 4.13. .
)
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1%
juahy
4 %z As bits are clocked into the shift register, they pass
RS through an X-OR gate before arriving at the subsequent
stage of the shift register. The other input to eacii X-OR

xﬁﬂ gate is a feedback term from the input data. The output of
iiﬁ the X-OR gates are fed into the next stage of the shift
\.:E register.

‘,: The configuration of a CRC shift register is dependent
f%g on the generator polynomial. The number of shift register
‘i&é stages is equal to the degree of the generator polynonmial.
;gh The number of X~UR gates connecting the feedback line to
t B the shift register segments is equal to the number of teras
iﬁﬂ; in the generator polynomial. If a term is included in the
ié?ﬁ generator polynomial, the output of that shift register
"™
;;}j segment is combined with the feedback term and passed
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Figure 4.13 VLSI Implementation of a CRC Shift

Register Segment
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through an X-OR gate into the input of the next shift
register segment. If the term is not to be included, the

shift register segment output is connected to the input of
the next shift register segment without any effect by the
feedback ternm.

In a parameterized protocol convertor, any combination
of terms for the CRC generator polynomial should be
available. To accomplish this, all of the shift register
segments are equipped with X-OR gates. The inclusion of
the X-OR’Ad feedback terms is controlled through the use of
pass transistors. If a term is to be included in the
generator polynomial, the controlling pass transistors are
set such that the output of the shift register segment goes
through the X-OR gate and is combined with the feedback
term. Otherwise the controlling pass transistors bypass
the the X-OR gate completely, and the output of the shift
register segment is fed directly into the input of the next
shift register segment.

The first and last terms of the generator polynomial
are always included, so there is no pass transistor
controlling the path of the first shift register segment
output. The last term, even though it is always included,
still uses the controlling pass transistor to allow for a
variable CRC word length. The length of the CRC shift
register is a function of the system word length; a
parameter input.

The input protocol conversion units uses the CRC shift
register for error detection. Once the input data stream
has been shifted through the CRC shift register, the shift
register segments are tested to determine if any errors
were detected in the incoming data stream. 1In the case of
character oriented or byte count input protocol conversion
units, this is accomplished by combining the status of all
the shift register segments into a NOR gate. If the output
of the NOR gate is one, there were no errors. A zero
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; output from the NOR gate indicates the frame or the block
A
i\? check character were received with errors. Bit oriented

input protocol conversion units require the shift register
segments be tested against a stored bit image to determine
ik if any bits were received in error. This is accomplished
using a detect PLA.

The process of passing a frame through a CRC shift

5 register destroys the information content of the franme.
: This requires the parallel input of the received frame into
) both a CRC shift register for error detection and other
) shift registers for other protocol sub-function
;;ﬁ manipulations. The parallel input is accomplished by
'é& copying the input data stream into multiple shift registers
(:? simul taneously.
° The output protocol conversion units use the CRC shift
;t register for block check character generation. As the
‘ta converted data stream is output back to the data path
%i% . controller, the bits are copied into the CRC shift
register. When the second virtual flag is received by the
§:; output protocol conversion unit, indicating the end of the
:ti message data, the contents of the CRC shift register are
‘} appended to the converted data stream. Once all the bits
%j have been clocked through the CRC shift register, the shift
pj: register contents are the block check characters.
té‘ Each of the different framing techniques relies on a
;& set of bit sequences called control characters to
accommodate the required sub-functions of operation. Bit
S oriented protocols use the synchronization flag, and byte
jé%‘ count protocols use the SYN character for synchronization.
“ﬁr The character oriented protocols by their design use the
A'r most control characters. Depending on their use, some
.:k control characters require activity on the part of the
;;; protocol convertor, others can be passed on to the external
:tf communication system as information. Those control
‘if characters that require activity by the protocol convertor
'«:
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must be detected and a response initiated. These include
the character oriented protocol transparent data indicator
character DLE, and the synchronization character SYN.
Those control characters that do not require activity by
the protocol convertor are converted to a set of virtual
protocol control characters with a translation table and
passed to the output protocol conversion unit. There the
virtual protocol control characters are converted back into
those control characters expected by the receiving
station. Examples of information conveying characters
which do not require activity on the part of the protocol
convertor are the character oriented protocol ACK
acknowledge, and EN@ enqguiry. In Keeping with the concept
of a flexible protocol convertor, the translation tables

should be stored in an accessible mediunm.

F. SUMMARY

A typical example of protocol conversion was described
to illustrate the basic requirements of the protocol
conversion process. Examples of the frame formats,
parameter inputs and the control code translation table for
two different protocols were followed by a frame-by-frame
description of the conversion process.

Next, a description of the convertor architecture
required to implement a fast, yet flexible protocol
conversion process was presented. The top-level
description included the three different types of inputs
into the system and the data path through the system.

The top-level architecture description was followed by
an in-depth description of the protocol conversion process
using only hardware. The central concept of the conversion
process is a virtual protocol used internally to the
protocol convertor. Selection of the components of the
virtual protocol is the key to simplifying the conversion

process.
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Next follows an analysis of the protocol sub-functions

* Tululok

£

required of the protocol convertor; framing, transparency,
and error control. Framing is required for the recognition

-
373 2

LFRIcR by
Liie 250 B 3

of and establ ishment of frame boundaries. Transparency
permits the transmission of data that would otherwise be
interpreted as a control character. Error control

-
-

t’,.‘
-’

(S generates block check characters and checks input data for
'ﬁﬁ transmission errors. The inclusion of the sub-functions of
5 line control, time-out control, sequence control and
\id initialization in the protocol convertor is unnecessary
- The implementation of these functions by the external
::? communication system is sufficient.
%ﬁa The description of the required sub-functions is
:fi followed by a description of the circuits used to implement
" them. The framing circuit detects the synchronization
%ﬁ character or flag and generates signals to help segment the
'53 subsequently received data in word length groups. The
?:ﬁ ) transparency circuit detects and strips any stuffed
N characters or bits in the incoming protocol conversion
i units. In the output protocol conversion units, the
f;? transparency circuit detects any data that should be made
Eé transparent to the external communication system and marks
t) the data as such by stuffing characters or bits as
:ﬁ appropriate. The error circuit generates or checks the
ff block check characters depending on its use in an input or
:a: an output protocol conversion unit.
" Two circuits of the protocol convertor are described in
‘é{ detail, the detect PLA and the CRC Shift Register. In
Jg' keeping with the concept of the protocol convertor as a
‘Eﬁ filter operating at sufficient speeds to avoid becoming a
]r. bottleneck in the system, an optimum design is provided for
Q' the most prevalent circuit, the detect PLA. The error
.&2 control functions provided by the CRC Shift Register are
?x usually implemented with software and the CRC Shift
“? Register is a hardware implementation of the CRC algorithn.
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fadt V. IMPLEMENTATION

A. CHIP DESIGN

5% Several relatively large circuits are required in each
i protocol conversion unit, such as the detect PLA. The

ﬁ' standard 40 pin VLSI package can support a silicon chip of
z§ approximately 7 millimeter square dimensions

Ny (Ref. 20:p. 131]. Using 2.5 micrometer unit length

ﬂw technology, 7 square millimeters equates to 2800 square

vl lambda for the entire protocol convertor.

:;j The surface area available for the protocol convertor
:é circuit is reduced somewhat from the 2800 square lambda by
:ﬁ‘ the area required for input and output pads. Using the

:' typical pad dimension of 1002150 lambda [Ref. 21], and

L’ placing 10 pads on each side of the chip reduces the

'§3 available area to approximately 2500 square lambda.

ok Newkirk and Mathews (Ref. 21] list a shift register
i" design which occupies 24x90 lambda per bit. See

ﬁ? Figure 5.1.

N
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W

*? Figure 5.1 Shift Register Segment

A

;ﬁ The shift register requires a two-phase nonoverlapping

1 clock (PHI!1 and PHI2) for storage and shifting of the data
,r through the register. Using this design produces a 192x190

lambda design for an eight bit shift register.
The detect PLA with two pairs of input described in

3 Chapter Four occupies 195x143 lambda. See Figure 5.2.
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] Four PLAs with two pairs of inputs each are required to

Vi detect the equivalence between eight pairs of bits for a

\ total area of 780x195 lambda for each detect PLA.

f. The custom designed CRC shift register requires an area )

Ef; of 90x110 lambda per bit. See Figure 4.13. A sixteen bit

:k‘ CRC shift register can be constructed as two vertically

{) stacked eight bit CRC shift registers for a total area of

o 720x220 lambda.

i_; The major consideration in determining the layout of

i%ﬁ the chip is the central location of the data path
controller. See Figure 5.3. All input signals must pass

'SL through the data path controller twice. Centrally locating

; E the data path controller makes the average path to both the

,;? input and output protocol conversion unit the shortest

o possible.

i:g The input and output signals can be bussed through the

‘é;; protocol conversion units or routed in the 200 lambda wide

;ﬁi channels between the units. Bussing the signals through .

. the protocol conversion units places routing constraints on

V;f the V;4 and ground net. There is sufficient area on the ,

;%ﬁ chip to utilize channels between the different protocol

:¥§ conversion units and the data path controller. The input

. and output signals run horizontally; parallel to the vdd'

&:é ground and clock signals. All of these signals are

&*i implemented on the metal layer of the chip.

ﬁ; The control signals for the different protocol
conversion units are also routed through the 200 lambda

:%i wide channels between the units. These signals run

:X: vertically, perpendicular to the input and output signals.

ﬁi; The control signals are implemented in polysilicon.

L The system clock is dependent on the signalling speed

‘iﬂ of the external communication systenm. %he modem which

i&: demodulates the digital information from the analog signal

b also extracts a clock signal from the analog signal. The

‘;f clock signal is input into the clock input of the protocol

\,‘:
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3

E:? convertor and controls the timing of the system. The moden

gﬁ: extracts a single phase clock signal from the input data,

i ‘ which is converted into a two-phase, nonoverlapping clock

fw‘ signal within the protocol convertor. The two-phase clock :

:%j signal is generated with the clock pad circuit described by

;UJ Newkirk and Mathews (Ref. 2i:p. 111]. See Figure 5.4,

V) The predicted signal delay is a function of the longest

£¢) shift register used in the conversion process. The

’fﬁ majority of the protocol conversion process is accomplished

;f on a single byte at a time. It is necessary to store one

_“ byte within the protocol convertor to detect bit sequences

{Z dependent on the adjacent relationship between eight

f&g consecutive bits. With one byte in storage within the

&; protocol convertor, the overall transfer of information is

‘e going to be delayed by one byte of transfer time. For

#f: example, if the external communication system is exchanging
;ﬁ' information at a rate of 1200 bits per second, or a period
;i of 0.833 milliseconds per bit, a delay of eight bits would

; equate to a total transfer delay of 6.67 milliseconds. The

i;ﬂ transfer delay incurred by passing the information through .

}v‘ the protocol convertor would not be evident to the user on
’QL either end of the external communication system. The

J transmitted data would just arrive eight bit times later

ié than if it had not passed through the protocol convertor.

:\j In contrast, if the entire frame of data is stored in

%f% the protocol convertor, the delay would be noticeable. The
) frame would have to be stored, manipulated, and then passed
t{ on to the external communication systenm, A byte count

'iﬁ protocol frame can contain up to a maximum of 16373 bytes
g of data (Ref. 3:p. 158]1. Using the same 1200 bits per

L second information exchange rate, it would take 110 seconds

ﬁf: to receive and store the 130984 bits of the frame. If the

:ﬁf same parallel processing techniques were used the actual

“j; processing time would be equivalent to the single byte

'gf storage method. Ignoring the egquivalent processing times,
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;? it would take another 110 seconds to put the converted
o frame back on the communication channel at the same 1200
. bits per second. The entire process, not counting the
‘3 processing time, would take 220 seconds; a factor of
ti, 33:103 slower than the single byte storage method. This
fﬁ is a worst case analysis, using the longest frame
i; expected. If the average frame was just one half of the
ﬁ maximum possible length, the total frame storage technique
Q: would still be a factor of 16.5x103 slower.
% The success of the single byte storage method of
) protocol conversion depends on the minimum clock period of
'% the circuit. The single byte storage method processes the
% frame one byte at a time, without any processing delays
i other than the initial shift register fill delay. The
‘9 entire circuit must be capable of operating with a clock
jﬁ period less than the time required for one bit to shift
f{ into the shift register. The entire parallel prccessing of
. the byte of data held in the shift register must take place
| before the next bit is shifted in. An information transfer
Ez rate of 1200 bits per second corresponds to a minimunm
;i; processing period of 0.833 milliseconds.
jﬁ: The circuits of the protocol convertor all operate in
C) parallel, so the delay through them is not cumulative. The
{: overall delay of the protocol convertor will be the longest
g: delay of any one of the circuits. The delay of each
o circuit is independent on any delay in the other circuits.
;' The two circuits of primary concern in delay estimation are
;% the two circuits with the longest signal paths; the CRC
:f shift register circuit and the detect PLA circuit.
;i The two basic building blocks of the CRC shift register
;; circuit, inverters and NOR gates, both produce the same
: delay if only one of the NOR gates is active. This is the
f&; worst case condition, as the delay for the NOR gate
lj, decreases with an increase in the number of active gates.
¢!
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The inverter Z ratio of pull-up transistor area to

pull-down transistor area is five to one throughout. This
is slightly more than the Mead and Conway (Ref. 20]
recommended four to one ratio to compensate for the pass
transistors between the inverters used in the shift
register segments. There is a maximum of one pass
transistor between any two inverters, so no level
restoration is needed.

The two clock phases of the circuit need to be of
different duration because of the X-OR logic circuit
between the output of one shift register segment and the
input of the next. Although this logic is only included in
the signal path as a function of the variable generator
polynomial, it must be considered present in between all
shift register segments when considering worst case timing
delays.

Phase One of the clock permits data to be stored on the
first inverter of the shift register segment inverter
pair. See Figure 4.13. There are no logic functions
between the two inverters of the shift register segment, so
the duration of Phase One can be minimal. Since stray
capacitance delays are at least equal to the circuit delay,
the total delay for Phase One will be:

Phil = 2xKxtau = 10xtau

Where k is the ratio of pull-up transistor area to
pull-down transistor area and tau is the technology
dependent unit delay.

Phase Two of the clock permits the data signal to pass
through the second inverter of the shift register segment.
This signal then passes through the X-OR logic if that
particular term of the generator polynomial is to be
included, or bypasses the X-OR logic if the term is not to
be included. The longest signal path through the X-0OR
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logic is four gates. Doubling the delay for stray

capacitance, the minimal length of Phase Two must be:

. Phi, = 8xkxtau = 40xtau
b&
e Where K is the ratio of pull-up transistor area to
:)‘ pull-down transistor area and tau is the technology
ﬁa' dependent unit delay.
i“ Path delays are minimal because of the relative
% proximity of connected circuits, and long runs between
l circuits are done in metal. They are approximated as 9 tau
b for path delay and another 8 tau for driver delay.
.i? All total, Phase One should be approximately 30 tau,
Eﬁ and Phase Two should be approximately 60 tau. The total
;1 delay of the circuit requires a minimum of a 90 tau clock
"2, period. With tau equal to approximately 0.3 nanosecond,

this circuit could operate with approximately a

k}i 30 nanosecond clocking period, or at a frequency of
33 megahertz.
‘fi The internal signal path of the detect PLA is composed ]
}5§ of single input NOR gates with a Z ratio of 4. Phase One
§£f of the clock can again be minimal because of the lack of
) combinational logic functions between the input shift
:'% register and the PLA:
3%
sh Phi1 = 2xKxtau = 8x%xtau
e
%3 Where kK is the ratio of pull-up transistor area to
§i pull-down transistor area and tau is the technology
ﬁg dependent unit delay.
| The longest signal path through the four input PLA is
ﬁfj 5 tau which is added to the external NAND gate signal path
ﬁ?j of 4 tau for a total signal path delay of 9 tau. See
t” Table 4.2. Again doubling the value to account for stray
[
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capacitance delays, the total minimum period of Phase Two

is:
Phi2 = 18xkiktau = 72%xtau

Where k is the ration of pull-up transistor area to
pull-down transistor area and tau is the technology
dependent unit delay.

Path delays are again approximated as 9 tau and driver
delays as 8 tau. All total, Phase One should be
approximately 25 tau and Phase Two should be 90 tau. The
total delay of the circuit requires a minimum of a 115 tau
clock period. With a tau equal to approximately
0.3 nanoseconds, the detect PLA can operate with
approximately a 34.5 nanosecond clocking period, or at a
frequency of 29 megahertz.

Both the CRC shift register circuit and the detect PLA
circuit are capable of operating with a sufficiently short
clock period to permit the use of the single byte storage
method of protocol conversion.

B. SYSTEM DESIGN

There are two alternatives to implementation of a
parameterized protocol convertor within a communication
system. The protocol convertor can be installed internally
to the communication system hardware, or externally in its
own system environment.

The internal implementation of the parameterized
protocol convertor is recommended for several reasons:

- Simplification of the error control sub-function.
- To minimize redundant hardware.

The error control sub-function of the protocol
conversion units would not be required to perform error
detection if the protocol convertor is located adjacent to
the transmitting unit of the external communication
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system. Locating the protocol convertor internal to the

transmitting station of the external communication system

would guarantee a noise free channel between the

transmitting station and the protocol convertor. The data .
received into the protocol convertor could be assumed to be

error free and the only error control functions required

would be block check character generation by the output

protocol conversion units.

Locating the protocol convertor internally to the
communication system also reduces the number of MODEMs and
serial interfaces required to interface the coavertor to
the communication system. The protocol convertor expects
input signals in the same format as those sent to a serial
interface by a central processing unit. The output of the
protocol convertor is in the same format as the data a
central processing unit places on its busses to be sent to
a serial interface. If the protocol convertor is located
internal to the communication system, it can be spliced in .
between the serial interface and the output port of the
central processing unit. Locating the protocol convertor
within the communicating system allows the protocol
convertor to utilize the services of the serial interface
and MODEM already in place. This reduces the amount of
hardware required to integrate the protocol convertor into
the communication system.

Two alternatives are possible if the protocol convertor
is to be installed as a separate unit within the
communication system. The choice of which implementation
depends on the intensity of expected traffic through the
protocol convertor.

If a continuous traffic load is expected, a fast, but
hardware intensive implementation should be used. This
implementation requires two half-duplex MODEMs and two
serial interfaces per protocol convertor, or one
full-duplex MODEM and two serial interfaces per protocol
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convertor. The design of the protocol convertor as a

filter with minimal storage implies an ability to pass

information through the convertor as fast as it is

. received. Manipulating data without storage requires a

‘ MODEM channel and a serial interface to receive the input

] 1 data stream, and another MODEM channel and serial interface
pair to transmit the output data stream at the same tinme,.

,i A single MODEM channel, serial interface pair would not be

?ﬁ sufficient. Half-duplex MODEMs can only transait or

receive at one time. Two of these would be required to

receive the input data and transait the output data

T

simultaneously. A full-duplex MODEM can both transmit and

#E receive at the same time, but only if the two data

%; sequences are separated in the frequency spectrum. One

° full-duplex MODEM would be sufficient, if each MODEM

'} channel was equipped with its own serial interface.

S In a less intensive traffic load environment, a slower,

but less expensive implementation could be used. A single
hal f-duplex MODEM and a single serial interface could be

used between the protocol convertor and the communication
channel. The data received by the MODEM would be passed

e . ats
A
1 2 4 & 2 8 2.

through the serial interface to the protocol convertor and
stored until the entire frame was received and converted.
J The output data would then be fed back to the MODEM through
a’ the serial interface. This implementation would be much
o more conservative in the use of hardware, but the required
storage of the converted data would defeat the concept of

;ﬁj the protocol convertor as a fast filter.

;3 C. SUMMARY

@ A top-level floor plan for VLSI implementation of the

;\ parameterized protocol convertor was presented, detailing
'

i: signal routes and circuit locations. Next a detailed

,

analysis of the predicted signal delay through the two
major circuits, the detect PLA and the CRC Shift Register,

i
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fﬁ was presented. The analysis shows both circuits are
Q capable of operating at sufficiently high clock frequencies
to allow use of the single byte storage method of protocol

lp' conversion. Two possible system-level implementations were y
{1 presented, one for a continuous traffic load, and one for
) periodic message traffic.
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VI. CONCLUSIONS

There is 2 need for a flexible, yet fast protocol
convertor. In many instances, protocol standards have been
misinterpreted, equipment has been forced into service it
was not designed for, or systems have been developed
without due consideration for interoperability. Any
situation where two stations of a communication system can
not communicate because of different protocols, no matter
what the source of the difference in protocols, regquires a
protocol convertor.

The conflict between requirements for speed and
flexibility in a protocol convertor can be resolved with a
careful analysis of how much speed and what degree of
flexibility is required. All systems have an inherent
limitation in their communication speed capability, from
one of many possible sources. If a protocol convertor can
be designed to operate faster than the slowest component of
the communication system it is designed to support, it can
avoid becoming the bottleneck in the system. Dynanmic
flexibility can be sacrificed to increase this speed
without limiting the application variations of the design
if a limited degree of static flexibility is maintained.

The choice of which flow architecture to use also
effects the speed of operation. If the design is patterned
around a control flow architecture, the serial operation of
the design will limit its possible speed. If the parallel
constructs of a data flow architecture are used, the speed
of operation can be greatly enhanced. The functions of a
protocol convertor lend themselves to a parallel
architecture approach, where many operations can take place
simultaneously.
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The design presented to meet the requirements of speed
and flexibility has some, as of yet, unresolved problenms.
The major one being how to accomplish the bit and character
stripping and stuffing. Early on in the analysis of the
problem it was decided that to facilitate a high rate of
data moving through the protocol convertor, there should be
a mninimum of storage of the data. Optimally, the minimum
storage should be one bit, but the relative position of
each bit in an eight bit byte is instrumental in
determining the meaning of the bits. Because all eight
bits are needed, the minimum storage is one byte. This
minimum of storage is the bane of any stripping and
stuffing circuit. The functions of stripping and stuffing
are relatively straight forward when an entire frame is
available in a storage buffer, but when only one byte at a
time is available for manipulation, stripping and stuffing
bits or characters becomes difficult.

As data is clocked into the protocol convertor, if a
bit is stripped by the transparency circuit there is
nothing to clock out of the protocol convertor when the
empty bit interval arrives at the output. The concept of
minimal storage requires data to be clocked out at the same
rate it is clocked in. Only a single byte is ever stored
within the convertor. 1If an entire character is to be
stripped from the data, as in character oriented protocols,
there would be a eight bit intervals without any data
contents. To compensate for the empty bit intervals would
require speeding up the input data or slowing down the
output data, or both.

A similar problem occurs when bits or characters must
be stuffed into the data by the transparency circuit. The
data does not contain holes where these characters or bits
are supposed to be inserted. Making room for the stuffed
bits would require slowing down the input data or speeding
up the data being output, or both. Serial, synchronous
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transmissions are by design strictly clocked signals. The

data is modulated with its own clock signal to aid in
determining the segregation of the bits. The clock signal
is constant, regardless of the requirements of a protocol
convertor between the receiving station and the
transmitting station.

Unfortunately, the transparency sub-function and
consequently an ability to perform bit and character
stripping and stuffing is required to implement a
parameterized protocol convertor. The passage of
transparent data between two stations is required in most
applications. Ignoring the designation of transparent data
as such would have far reaching effects on other aspects of
the conversion process. For example, the character DLE
used by character oriented protocols to indicate
transparent data within the information field of a frame is
not included in the block check characters. If the DLE
character is not stripped before reaching the error control

circuitry, the block check characters will never indicate
an error free reception of the frame.

Another problem caused by the self-imposed requirement
for minimal storage of the data occurs in the manipulation
of byte count protocols. The length of the information
field in a byte count protocol is included as part of the
header contents. The header of a frame is transmitted
first and subsequently arrives first at its destination.
The interpretation of the byte count frame by the protocol
convertor is no problem. The byte count is read from the
header and a counter is set with the value. As the frame
is clocked through the convertor, the passage of each byte
decrements the counter by one. When the count reaches
zero, the frame has been received in its entirety.

The transmission of byte count protocol frames is a
different matter. The byte count of any protocol frame can
only be determined by counting the bytes as they pass
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through the convertor. The entire frame must be received
before a byte count can be determined. The concept of
minimal storage requires the converted data to be output as
the input data is received. Only a one byte delay is
allowed. The location of the byte count in the header of
the frame, which is transmitted first requires a knowledge
of the total number of bytes to be received while those
bytes are still being input.

One possible solution to this problem would be to use a
set frame length for output from the byte count protocol
conversion units. For example, in a byte count frame, the
maximum frame length is 16363 bytes of message data, ten
bytes of frame header and two bytes of trailing block check
characters. If the maximum frame length was assumed, the
set byte count could be inserted in the frame header as it
was output. Any frame space not utilized by the incoming
data could be padded with blanks, zeros are some other
predetermined character. The use of a set frame length,
especially the raximum frame length allowable, would entail
wasting a lot of frame space with shorter messages. The
question remains if the wasted frame space is worth the
completeness of design by allowing any input or output
protocol framing technique.

Another problem is in the number and meaning of the
control codes of the different protocols. To establish
control code translation tables, a distinct relation must
be established between the each control code of the two
protocols involved. Some control codes have multiple
meanings in a different protocol. For example, Receive
Ready in a bit oriented protocol can be translated to Start
Acknowledge or Positive Acknowledge in a byte count
protocol. Bit oriented protocols respond with Receive
Ready when they receive an initialization message and when
the last frame was received without errors. The byte count
protocols expect a Start Acknowledge control code in
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response to any initialization message and a Positive

Acknowledge control code in response to a correctly
received frame.

A method must be devised to aid the protocol convertor
in determining the intended meaning of the control code.
The basis for one solution could be narrowing down the
possible responses to each control code to be detected by
the protocol convertor. For example, in the byte count
protocol conversion unit, once the Start Message control
code is sent, a Start Acknowledgment control code is
expected in response. A bit oriented protocol sends the
same Receive Ready control code in response to both a Start
Message control code and an error free frame. The byte
count protocol conversion unit that initiated the Start
Message Knows what to expect as a response. The conversion
unit should interpret the Receive Ready control code as a
Start Acknowledgment control code, which makes sense,
instead of Positive Acknowledgment, which does not.

There is still much work to be done in developing an
optimum protocol convertor circuit. The myriad of problems
presented by the lack of corresponding functions between
the different protocols presents a challenge that will
exist for a long time. Until a single standard can be
developed, clearly delineated, and accepted, there will be

a need for protocol conversion.
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